对于集合N={1,2,3,…,n}的每一个非空子集,定义一个“交替和”如下:按照递减的次序重新排列该子集,然后从最大数开始交替地减、加后继的数.例如集合{1,2,4,6,9}的交替和是9-6+4-2+1=6,集合{5}的交替和为5.当集合N中的n=2时,集合N={1,2}的所有非空子集为{1},{2},{1,2},则它的“交替和”的总和S2=1+2+(2-1)=4,请你尝试对n=3、n=4的情况,计算它的“交替和”的总和S3、S4,并根据其结果猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和Sn= .
【答案】分析:根据“交替和”的定义:按照递减的次序重新排列该子集,然后从最大数开始交替地减、加后继的数可求出“交替和”的总和S3、S4,并根据其结果猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和Sn即可.
解答:解:S1=1 S2=4
当n=3时 S3=1+2+3+(2-1)+(3-1)+(3-2)+(3-2+1)=12
S4=1+2+3+4+(2-1)+(3-1)+(4-1)+(3-2)+(4-2)+(4-3)+(3-2+1)+(4-2+1)+(4-3+1)+(4-3+2)+(4-3+2-1)=32
∴根据前4项猜测集合N={1,2,3,…,n}的每一个非空子集的“交替和”的总和Sn=n•2n-1
故答案为:n•2n-1
点评:本题主要考查了数列的应用,同时考查了归纳推理的能力,属于中档题.