分析 设切点为(m,n),求出函数的导数,求得切线的斜率,由两直线平行的条件可得斜率相等,再设切线l:y=x+t,运用平行线的距离公式可得t,解方程即可得到所求a的值.
解答 解:设切点为(m,n),y=2x-alnx的导数为y′=2-$\frac{a}{x}$,
由切线l与直线y=x-5平行,
可得切线的斜率为2-$\frac{a}{m}$=1,
可设切线l:y=x+t,由两直线距离为3$\sqrt{2}$,
可得3$\sqrt{2}$=$\frac{|t+5|}{\sqrt{2}}$,解得t=1或-11.
若切线为y=x+1,可得n=m+1,
又n=2m-alnm,解方程可得a=1;
若切线为y=x-11,可得n=m-11,
又n=2m-alnm,可得m-mlnm=-11,
设f(m)=m-mlnm+11,由f(9)=9-9ln9+11>0,
f(10)=10-10ln10+11<0,
即有m-mlnm=-11的解介于9到10之间.
故答案为:1.
点评 本题考查导数的运用:求切线的斜率,考查两直线平行的条件:斜率相等,以及运算求解的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{4}$ | B. | -$\frac{π}{4}$ | C. | $\frac{3}{4}π$ | D. | -$\frac{3}{4}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com