【题目】(本小题满分16分)
在平面直角坐标系xOy中,椭圆C:(a>b>0)的上顶点到焦点的距离为2,离心率为.
(1)求a,b的值.
(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.
(ⅰ)若k=1,求△OAB面积的最大值;
(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.
【答案】(1)+y2=1.(2)(ⅰ)m=±时,S△OAB取得最大值1.(ⅱ)±.
【解析】
试题分析:(1)由椭圆几何条件知上顶点到焦点的距离为半长轴长,即a=2,又e,所以c=,故b=1.(2)(ⅰ)求△OAB面积的最大值,关键建立其函数关系式,这要用到点到直线距离公式来求高,利用两点间距离公式来求底边边长:设点P(m,0)(-2≤m≤2),直线l的方程为y=x-m.则可求得∣AB|=,高为,从而S△OAB=×|m|,利用基本不等式求最值(ⅱ)由题意先表示出PA2+PB2,再按m整理,最后根据与点P的位置无关得到对应项系数为零,从而解出k的值.
试题解析:(1)由题设可知a=2,e,所以c=,故b=1.
因此,a=2,b=1. 2分
(2)由(1)可得,椭圆C的方程为+y2=1.
设点P(m,0)(-2≤m≤2),点A(x1,y1),点B(x2,y2).
(ⅰ)若k=1,则直线l的方程为y=x-m.
联立直线l与椭圆C的方程,即.将y消去,化简得
-2mx+m2-1=0.从而有x1+x2=, x1· x2=,
而y1=x1-m,y2=x2-m,
因此,∣AB|=
点O到直线l的距离d=,
所以,S△OAB=×|AB|×d=×|m|,
因此,S2△OAB= ( 5-m2)×m2≤=1.
6分
又-2≤m≤2,即m2∈[0,4].
所以,当5-m2=m2,即m2=, m=±时,S△OAB取得最大值1.
8分
(ⅱ)设直线l的方程为y=k(x-m).
将直线l与椭圆C的方程联立,即.
将y消去,化简得(1+4k2)x2-8mk2x+4(k2m2-1)=0,解此方程,可得,
x1+x2=,x1·x2= . 10分
所以,
PA2+PB2=(x1-m)2+y12+(x2-m)2+y22= (x12+x22)-2m(x1+x2)+2m2+2
= (*). 14分
因为PA2+PB2的值与点P的位置无关,即(*)式取值与m无关,
所以有-8k4-6k2+2=0,解得k=±.
所以,k的值为±. 16分
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面,,, 分别为的中点,点在线段上.
(Ⅰ)求证:平面;
(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为椭圆上的一个动点,弦分别过左右焦点,且当线段的中点在轴上时, .
(1)求该椭圆的离心率;(2)设,试判断是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.
(1)求证:BD1∥平面A1DE;
(2)求直线A1E与平面AD1E所成角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnax﹣ (a≠0).
(1)求此函数的单调区间及最值;
(2)求证:对于任意正整数n,均有1+ + …+ ≥ln (e为自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是正方形的四棱锥P﹣ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由;
(3)当二面角B﹣PC﹣D的大小为 时,求PC与底面ABCD所成角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com