精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分16分)

在平面直角坐标系xOy中,椭圆C:(ab0)的上顶点到焦点的距离为2,离心率为

(1)求a,b的值.

(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.

若k=1,求OAB面积的最大值;

)若PA2+PB2的值与点P的位置无关,求k的值.

【答案】(1)y21(2)m=±时,SOAB取得最大值1±.

【解析】

试题分析:(1)由椭圆几何条件知上顶点到焦点的距离为半长轴长,即a=2,又e,所以c=,故b=1(2)OAB面积的最大值,关键建立其函数关系式,这要用到点到直线距离公式来求高,利用两点间距离公式来求底边边长:设点Pm,0)(-2m2),直线l的方程为y=xm.则可求得AB|=,高为,从而SOAB×|m|,利用基本不等式求最值由题意先表示出PA2+PB2,再按m整理,最后根据与点P的位置无关得到对应项系数为零,从而解出k的值.

试题解析:1)由题设可知a=2e,所以c=,故b=1

因此,a=2b=1 2

2)由(1)可得,椭圆C的方程为y21

设点Pm,0)(-2m2),点Ax1y1),点Bx2y2).

()k=1,则直线l的方程为y=xm

联立直线l与椭圆C的方程,即.将y消去,化简得

2mx+m21=0.从而有x1x2 x1· x2

y1=x1my2=x2m

因此,AB|=

O到直线l的距离d

所以,SOAB×|AB|×d×|m|,

因此,S2OAB ( 5m2)×m2=1.

6

又-2m2,即m2[0,4]

所以,当5m2m2,即m2 m=±时,SOAB取得最大值1

8

()直线l的方程为y=k(xm).

将直线l与椭圆C的方程联立,即

将y消去,化简得(14k2)x2-8mk2x4(k2m21)=0,解此方程,可得,

x1x2x1·x2 10分

所以,

PA2PB2(x1-m)2y12(x2-m)2y22 (x12x22)-2m(x1x2)2m22

(*). 14分

因为PA2PB2的值与点P的位置无关,即(*)式取值与m无关,

所以有-8k4-6k2+2=0,解得k=±

所以,k的值为±. 16分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面 分别为的中点,点在线段上.

(Ⅰ)求证:平面

(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017河北唐山三模】已知函数 .

(1)讨论函数的单调性;

(2)若函数在区间有唯一零点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆上的一个动点,弦分别过左右焦点,且当线段的中点在轴上时,

(1)求该椭圆的离心率;(2)设,试判断是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分设数列的前项和为,已知.

1求数列的通项公式;

2证明:对一切正整数,有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

在正三棱柱中,点的中点,

(1)求证:平面

(2)试在棱上找一点,使

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.

(1)求证:BD1∥平面A1DE;
(2)求直线A1E与平面AD1E所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnax﹣ (a≠0).
(1)求此函数的单调区间及最值;
(2)求证:对于任意正整数n,均有1+ + …+ ≥ln (e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是正方形的四棱锥P﹣ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.

(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由;
(3)当二面角B﹣PC﹣D的大小为 时,求PC与底面ABCD所成角的正切值.

查看答案和解析>>

同步练习册答案