分析 (1)由题意可得f(1)=1-b+c=0,f(2)=4-2b+c=-3,解方程组可得;
(2)由(1)得f(x)=x2-6x+5,整体代入可得函数解析式,由式子有意义可得定义域.
解答 解:(1)由题意可得f(1)=1-b+c=0,f(2)=4-2b+c=-3,
联立解得:b=6,c=5,∴f(x)=x2-6x+5;
(2)由(1)得f(x)=x2-6x+5,
∴$f({\frac{1}{{\sqrt{x+1}}}})$=${(\frac{1}{{\sqrt{x+1}}})^2}-6(\frac{1}{{\sqrt{x+1}}})+5=\frac{1}{x+1}-\frac{6}{{\sqrt{x+1}}}+5$,
$f({\frac{1}{{\sqrt{x+1}}}})$的定义域为:(-1,+∞)
点评 本题考查待定系数法求函数的解析式,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 奇函数 | B. | 偶函数 | ||
C. | 既是奇函数又是偶函数 | D. | 是非奇非偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a(1+r)13 | B. | a(1+r)14 | C. | a(1+r)15 | D. | a+a(1+r)15 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 335 | B. | 340 | C. | 1680 | D. | 2015 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com