【题目】已知函数,对于任意的 ,都有, 当时,,且.
( I ) 求的值;
(II) 当时,求函数的最大值和最小值;
(III) 设函数,判断函数g(x)最多有几个零点,并求出此时实数m的取值范围.
【答案】(I);(II);(III)当 时,函数最多有个零点.
【解析】
(Ⅰ)根据条件,取特殊值求解;
(Ⅱ)根据定义,判断函数的单调性,进而求出函数的最值;
(Ⅲ)根据定义,判断函数为奇函数,得出g(x)=f(x2﹣2|x|﹣m),令g(x)=0即f(x2﹣2|x|﹣m)=0=f(0),根据单调性可得 x2﹣2|x|﹣m=0,根据二次函数的性质可知最多有4个零点,且m∈(﹣1,0).
(I)令得,得.
令得,
令得
(II)任取且,则,
因为,即,
令
则.
由已知时,且,则,
所以 ,,
所以函数在R上是减函数,
故 在单调递减.
所以,
又,
由,得 ,
,
故.
(III) 令代入,
得,
所以,故为奇函数.
∴
=
=
,
令,即,
因为函数在R上是减函数,
所以,即,
所以当 时,函数最多有4个零点.
科目:高中数学 来源: 题型:
【题目】医药公司针对某种疾病开发了一种新型药物,患者单次服用制定规格的该药物后,其体内的药物浓度随时间的变化情况(如图所示):当时,与的函数关系式为(为常数);当时,与的函数关系式为(为常数).服药后,患者体内的药物浓度为,这种药物在患者体内的药物浓度不低于最低有效浓度,才有疗效;而超过最低中毒浓度,患者就会有危险.
(1)首次服药后,药物有疗效的时间是多长?
(2)首次服药1小时后,可否立即再次服用同种规格的这种药物?
(参考数据:,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义区间[x1 , x2]长度为x2﹣x1(x2>x1),已知函数f(x)= (a∈R,a≠0)的定义域与值域都是[m,n],则区间[m,n]取最大长度时a的值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】心理学家发现视觉和空间能力与性别有关,某高中数学兴趣小组为了验证这个结论,从兴趣小组中抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
几何题 | 代数题 | 合计 | ||
男同学 | 22 | 8 | 30 | |
女同学 | 8 | 12 | 20 | |
合计 | 30 | 20 | 50 |
(1)能否据此判断有的把握认为视觉和空间能力与性别有关?
(2)以上列联表中女生选做几何题的频率作为概率,从该校1500名女生中随机选6名女生,记6名女生选做几何题的人数为,求的数学期望和方差.
附表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,则实数 b的取值范围是( )
A.(﹣∞, )
B.(﹣∞, )
C.(﹣∞,3)
D.(﹣∞, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,几何体EF﹣ABCD中,CDEF为边长为2的正方形,ABCD为直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(1)求证:AC⊥FB
(2)求二面角E﹣FB﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊著名的毕达哥拉斯学派把…这样的数称为“三角形数”,而把…
这样的数称为“正方形数”.如图,可以发现任何一个大于的“正方形数”都可以看作两个相邻
“三角形数”之和,下列四个等式:①;②;③;
④ 中符合这一规律的等式是_____________.(填写所有正确结论的编号)
……
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知().
(1)当时,求关于的不等式的解集;
(2)若f(x)是偶函数,求k的值;
(3)在(2)条件下,设,若函数与的图象有公共点,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】,为两个不同的平面,,为两条不同的直线,下列命题中正确的是( )
①若,,则; ②若,,则;
③若,,,则 ④若,,,则.
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com