【题目】设椭圆的左右焦点为,,是上的动点,则下列结论正确的是( )
A.B.离心率
C.面积的最大值为D.以线段为直径的圆与直线相切
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为(t为参数).直线与曲线分别交于两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若点的极坐标为,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为、,过的直线与椭圆相交于、两点.
(1)求 的周长;
(2)设点为椭圆的上顶点,点在第一象限,点在线段上.若,求点的横坐标;
(3)设直线不平行于坐标轴,点为点关于轴的对称点,直线与轴交于点.求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,点是线段上的动点,则下列说法错误的是( )
A. 当点移动至中点时,直线与平面所成角最大且为
B. 无论点在上怎么移动,都有
C. 当点移动至中点时,才有与相交于一点,记为点,且
D. 无论点在上怎么移动,异面直线与所成角都不可能是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,,,,的面积为.
(1)求椭圆的方程;
(2)过右焦点作与轴不重合的直线交椭圆于,两点,连接,分别交直线于,,两点,若直线,的斜率分别为,,试问:是否为定值?若是,求出该定值,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动点到点的距离和它到直线的距离相等,记点的轨迹为.
(1)求的方程;
(2)设点在曲线上,轴上一点(在点右侧)满足,若平行于的直线与曲线相切于点,试判断直线是否过点?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com