精英家教网 > 高中数学 > 题目详情

【题目】已知函数,则满足的实数的取值范围是________.

【答案】

【解析】

构造新函数h(x)=x(ex-e-x),求证h(x)为偶函数且在x>0上单调递增,即能得到h(|x|)>h(|3x-1|),代入解不等式即可

构造函数h(x)=x(ex-e-x

h(-x)=(-x)(e-x-ex)=x(ex-e-x),所以函数h(x)是偶函数.

x>0时,h(x)为单调递增函数,由g(x)>0知:

x(ex-e-x)>(3x-1)(e3x-1-e1-3x

即:h(x)>h(3x-1)

由于h(x)是偶函数,不等式等价于h(|x|)>h(|3x-1|)

h(x)在x>0上是增函数,

|x|>|3x-1|

解不等式可得

所以实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正三棱锥的高为6,内切球(与四个面都相切)表面积为,则其底面边长为( )

A. 18 B. 12 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用年的隔热层,每厘米厚的隔热层建造成本为万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:厘米)满足关系:.若不建隔热层,每年的能源消耗费用为万元.为隔热层建造费用与年的能源消耗费用之和.

1)求的值及的表达式;

2)隔热层修建多厚时,总费用最小,并求其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:

分组

男生人数

2

16

19

18

5

3

女生人数

3

20

10

2

1

1

若将平均每日参加体育锻炼的时间不低于120分钟的学生称为锻炼达人”.

1)将频率视为概率,估计我校7000名学生中锻炼达人有多少?

2)从这100名学生的锻炼达人中按性别分层抽取5人参加某项体育活动.

①求男生和女生各抽取了多少人;

②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜三棱柱的棱长都是,侧棱与底面成60°角,侧面底面.

1)求证:

2)求平面与平面所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在△中, 分别为 的中点, 的中点 将△沿折起到△的位置,使得平面平面 的中点如图2

1求证: 平面

2求证:平面平面

3线段上是否存在点,使得平面?说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)判断的单调性;

(2)若函数存在极值,求这些极值的和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,其前n项和,则下列说法正确的个数是(

①数列是等差数列;②;③.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,PA⊥平面ABCDCDADBCAD.

(Ⅰ)求证:CDPD

(Ⅱ)求证:BD⊥平面PAB

(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案