精英家教网 > 高中数学 > 题目详情

【题目】某品牌新款夏装即将上市,为了对新款夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:

连锁店

售价(元)

80

86

82

88

84

90

销量(件)

88

78

85

75

82

66

(1)分别以三家连锁店的平均售价与平均销量为散点,求出售价与销量的回归直线方程

(2)在大量投入市场后,销量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该新夏装在销售上获得最大利润,该款夏装的单价应定为多少元?(保留整数)

附:.

【答案】(1)(2)80

【解析】分析:(1)先求出三家连锁店的平均年售价和平均销量,根据回归系数公式计算回归系数,得出回归方程;

(2)设定价是x,得出利润关于x的函数利用二次函数的性质求出的最大值点,求得结果.

详解:(1)三家连锁店平均售价和销量分别为:

.

(2)设该款夏装的单价应定为元,利润为元,

.

时,取得最大值,故该款夏装的单价应定为80元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1)求的值;

(2)已知在定义域上为减函数,若对任意的,不等式为常数)恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量a(cos2ωxsin2ωxsinωx)b(2cosωx),设函数f(x)a·b(xR)的图象关于直线x对称,其中ω为常数,且ω(01)

(1)求函数f(x)的最小正周期和单调递增区间;

(2)若将yf(x)图象上各点的横坐标变为原来的,再将所得图象向右平移个单位,纵坐标不变,得到yh(x)的图象,若关于x的方程h(x)k0上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AEBF所成角的余弦值为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣2ax,a∈R.
(Ⅰ)若函数y=f(x)存在与直线2x﹣y=0垂直的切线,求实数a的取值范围;
(Ⅱ)设g(x)=f(x)+ ,若g(x)有极大值点x1 , 求证: >a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.

(1)若,证明:函数必有局部对称点;

(2)若函数在区间内有局部对称点,求实数的取值范围;

(3)若函数上有局部对称点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若F(x)=f[f(x)+1]+m有两个零点x1 , x2 , 则x1x2的取值范围是(
A.[4﹣2ln2,+∞)
B.( ,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.
(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)设点P(4,3),直线l与圆C相交于A,B两点,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

查看答案和解析>>

同步练习册答案