精英家教网 > 高中数学 > 题目详情

【题目】四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,侧面ABE⊥底面BCDE,BC=2,CD=4。

(I)证明:AB⊥面BCDE;

(II)若AD=2,求二面角C-AD-E的正弦值。

【答案】(Ⅰ)详见解析;(Ⅱ).

【解析】

(Ⅰ)推导出BEBC,从而BE⊥平面ABC,进而BEAB,由面ABE⊥面BCDE,得ABBC,由此能证明AB⊥面BCDE

(Ⅱ)以B为原点,所在直线分别为xyz轴,建立空间直角坐标系,利用向量法能求出二面角CADE的正弦值.

由侧面底面,且交线为,底面为矩形

所以平面,又平面,所以

由面,同理可证,又

在底面中,

,故,

为原点,所在直线分别为轴建立空间直角坐标系,

,

设平面的法向量,则,取

所以平面的法向量,同理可求得平面的法向量.

设二面角的平面角为,则

故所求二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,求:

1)过点与原点距离为2的直线的方程;

2)过点与原点距离最大的直线的方程,最大距离是多少?

3)是否存在过点与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1

求椭圆C的方程;

为椭圆C上一动点,连接,设的角平分线PM交椭圆C的长轴于点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为数列的前项和.任意正整数,均有为递增数列

A. 充分不必要条件 B. 必要不充分条件

C. 充要条件 D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国高铁的快速发展给群众出行带来巨大便利,极大促进了区域经济社会发展.已知某条高铁线路通车后,发车时间间隔(单位:分钟)满足,经测算,高铁的载客量与发车时间间隔相关:当时高铁为满载状态,载客量为1000人;当时,载客量会在满载基础上减少,减少的人数与成正比,且发车时间间隔为5分钟时的载客量为100.记发车间隔为分钟时,高铁载客量为.

1)求的表达式;

2)若该线路发车时间间隔为分钟时的净收益(元),当发车时间间隔为多少时,单位时间的净收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知过原点的动直线与圆 相交于不同的两点

1)求圆的圆心坐标;

2)求线段的中点的轨迹的方程;

3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四点均在双曲线的右支上.

(1)若(实数),证明:(O是坐标原点);

(2)若,P是线段AB的中点,过点P分别作该双曲线的两条渐近线的垂线,垂足为M、N,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对哪些正整数n,存在正整数 m 及正整数,使得?其中可以相同,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|.

(1)若不等式f(x)≥|2x+1|1的解集为A,且,求实数t的取值范围;

(2)在(1)的条件下,若,证明:f(ab)>f(a)f(b).

查看答案和解析>>

同步练习册答案