精英家教网 > 高中数学 > 题目详情
已知点Q(2
2
,0)
及抛物线y=
x2
4
上一动点P(x0,y0),则y0+|PQ|的最小值为
 
分析:设P到准线的距离为d,利用抛物线的定义得出:y0+|PQ|=d-1+|PQ|=|PF|+|PQ|-1最后利用当且仅当F、Q、P共线时取最小值,从而得出故y0+|PQ|的最小值是2.
解答:解:用抛物线的定义:
焦点F(0,1),准线 y=-1,设P到准线的距离为d
y0+|PQ|=d-1+|PQ|=|PF|+|PQ|-1≥|FQ|-1=2
(当且仅当F、Q、P共线时取等号)
故y0+|PQ|的最小值是2.
故答案为:2.
点评:本小题主要考查抛物线的定义、不等式的性质等基础知识,考考查数形结合思想、化归与转化思想,解答关键是合理利用定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(-2
2
,0),Q(2
2
,0)
,动点N(x,y),设直线NP,NQ的斜率分别记为k1,k2,记k1?k2=-
1
4
(其中“?”可以是四则运算加、减、乘、除中的任意一种运算),坐标原点为O,点M(2,1).
(Ⅰ)探求动点N的轨迹方程;
(Ⅱ)若“?”表示乘法,动点N的轨迹再加上P,Q两点记为曲线C,直线l平行于直线OM,且与曲线C交于A,B两个不同的点.
(ⅰ)若原点O在以AB为直径的圆的内部,试求出直线l在y轴上的截距m的取值范围.
(ⅱ)试求出△AOB面积的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点Q(2
2
,0)
及抛物线y=
x2
4
上的动点P(x,y),则y+|PQ|的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点Q(1,0)在椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)
上,且椭圆C的离心率
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(m,0)作直线交椭圆C于点A,B,△ABQ的垂心为T,是否存在实数m,使得垂心T在y轴上.若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知点Q(0,2
2
)及抛物线
y
2
 
=4x
上一动点P(x,y),则x+|PQ|的最小值是
2
2

查看答案和解析>>

同步练习册答案