精英家教网 > 高中数学 > 题目详情
(2013•虹口区一模)在△ABC中,AB=2
3
,AC=2,且∠B=
π
6
,则△ABC的面积为
3
或2
3
3
或2
3
分析:由已知,结合正弦定理可得
b
sinB
=
c
sinC
,从而可求sinC及C,利用三角形的内角和公式计算A,利用三角形的面积公式S△ABC=
1
2
bcsinA进行计算可求
解答:解:△ABC中,c=AB=2
3
,b=AC=2.B=30°
由正弦定理可得
2
3
sinC
=
2
sin30°

sinC=
3
2

b<c∴C>B=30°
当C=60°时,A=90°,S△ABC=
1
2
bcsinA=
1
2
×2×2
3
×1=2
3

当C=120°时,A=30°,S△ABC=
1
2
bcsinA=
1
2
×2×2
3
×
1
2
=
3

故答案为:
3
或2
3
点评:本题主要考查了三角形的内角和公式,正弦定理及“大边对大角”的定理,还考查了三角形的面积公式SABC=
1
2
bcsinA=
1
2
acsinB=
1
2
absinC,在利用正弦定理求解三角形中的角时,在求出正弦值后,一定不要忘记验证“大边对大角”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•虹口区一模)数列{an}满足an=
n   ,当n=2k-1
ak , 当n=2k
,其中k∈N*,设f(n)=a1+a2+…+a2n-1+a2n,则f(2013)-f(2012)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区一模)关于z的方程
.
1+i0z
-i
1
2
i
1-i0z
.
=2+i2013
(其中i是虚数单位),则方程的解z=
1-2i
1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区一模)在下面的程序框图中,输出的y是x的函数,记为y=f(x),则f-1(
12
)
=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区一模)如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”求出所有a的值;若不具有“P(a)性质”,请说明理由.
(2)已知y=f(x)具有“P(0)性质”,且当x≤0时f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.
(3)设函数y=g(x)具有“P(±1)性质”,且当-
1
2
≤x≤
1
2
时,g(x)=|x|.若y=g(x)与y=mx交点个数为2013个,求m的值.

查看答案和解析>>

同步练习册答案