【题目】(导学号:05856264)
已知函数f(x)=aln x,e为自然对数的底数.
(Ⅰ)曲线f(x)在点A(1,f(1))处的切线与坐标轴所围成的三角形的面积为2,求实数a的值;
(Ⅱ)若f(x)≥1-恒成立,求实数a的值取值范围.
【答案】(1) a=±4 (2) a的值为1
【解析】试题分析:(1)求出曲线的切线方程,根据三角形面积公式求出a的值即可;
(2)问题等价于alnx+﹣1≥0在(0,+∞)恒成立,令g(x)=alnx+﹣1,而g(1)=0,只需x=1是函数的极值点即可求出a的值.
试题解析:
(Ⅰ)f′(x)=,则切线的斜率为f′(1)=a.故曲线f(x)在点A(1,f(1))处的切线方程为
y-f(1)=a(x-1),即y-0=a(x-1),
即y=a(x-1).
令x=0,得y=-a;令y=0,得x=1,
故切线与坐标轴的交点分别为(0,-a),(1,0).
所以切线与坐标轴所围成的三角形的面积为×|-a|×1=2,解得a=±4.
(Ⅱ)由f(x)≥1-,得aln x≥1-,即aln x-1+≥0.
令g(x)=aln x-1+,则g(x)≥0恒成立.
因为函数g(x)=aln x-1+的定义域为(0,+∞),且g′(x)=-=,
①当a<0时,ax-1<0,则<0.即g′(x)<0.此时函数g(x)在(0,+∞)上单调递减,且因为g(1)=0,
所以当x∈(1,+∞),g(x)<0,不满足g(x)≥0恒成立.故舍去.
②当a>0时,令g′(x)<0,得0<x<;
令g′(x)>0,得x>;
所以函数g(x)在(0,)上单调递减,
在(,+∞)上单调递增.
所以函数g(x)的最小值为g().
因为g(1)=0,所以要使g(x)≥0恒成立,则g(1)必定是函数g(x)的最小值.
即=1,解得a=1.
综上,实数a的值为1.
科目:高中数学 来源: 题型:
【题目】四棱锥A-BCDE中,侧棱AD⊥底面BCDE,底面BCDE是直角梯形,DE∥BC,BC⊥CD,BC=2AD=2DC=2DE=4,H,I分别是AD,AE的中点.
(Ⅰ)在AB上求作一点F,BC上求作一点G,使得平面FGI∥平面ACD;
(Ⅱ)求平面CHI将四棱锥A-BCDE分成的两部分的体积比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题共12分)
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.
(1)求证:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地棚户区改造建筑用地平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似为圆面,该圆面的内接四边形ABCD是原棚户区建筑用地,测量可知边界AB=AD=4万米,BC=6万米,CD=2万米.
(1)请计算原棚户区建筑用地ABCD的面积及AC的长;
(2)因地理条件的限制,边界AD,DC不能变更,而边界AB,BC可以调整,为了提高棚户区建筑用地的利用率,请在上设计一点P,使得棚户区改造后的新建筑用地APCD的面积最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.
非一线 | 一线 | 总计 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
总计 | 58 | 42 | 100 |
由K2=,得K2=.
参照下表,
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
正确的结论是( )
A. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C. 有99%以上的把握认为“生育意愿与城市级别有关”
D. 有99%以上的把握认为“生育意愿与城市级别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是且各阶段通过与否相互独立.
(1)求该选手在复赛阶段被淘汰的概率;
(2)设该选手在竞赛中回答问题的个数为ξ,求ξ的分布列与均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=4,AD=2,E在DC边上,且DE=1,将△ADE沿AE折到△AD′E的位置,使得平面AD′E⊥平面ABCE.
(1)求证:AE⊥BD′;
(2)求三棱锥A-BCD′的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,设圆:=4 cos 与直线l:= (∈R)交于A,B两点.
(Ⅰ)求以AB为直径的圆的极坐标方程;
(Ⅱ)在圆任取一点,在圆上任取一点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(导学号:05856309)
已知抛物线C的方程为x2=4y,M(2,1)为抛物线C上一点,F为抛物线的焦点.
(Ⅰ)求|MF|;
(Ⅱ)设直线l2:y=kx+m与抛物线C有唯一公共点P,且与直线l1:y=-1相交于点Q,试问,在坐标平面内是否存在点N,使得以PQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com