【题目】已知椭圆的离心率,右焦点,过点的直线交椭圆于两点.
(1)求椭圆的方程;
(2)若点关于轴的对称点为 ,求证: 三点共线;
(3) 当面积最大时,求直线的方程.
【答案】(1) ;(2)见解析;(3) .
【解析】试题分析:(1)根据离心率可求得的值,从而可求得的值,进而可得结果;(2) 设,只需用平面向量坐标法证明即可得结论;(3)设直线的方程为,根据韦达定理、弦长公式、三角形面积公式将面积表示为关于的函数式,换元后根据配方法求最值,取得最值时可以确定的值,进而可得结果.
试题解析:(1) 由, 椭圆的方程是.
(2)由(1)可得,设直线的方程为. 由方程组,得,依题意,
得.设,则,由
,得三点共线.
(3)设直线的方程为. 由方程组,得,依题意,得.设,则
,令,则,即
时, 最大, 最大时直线的方程为.
【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用配方法法求三角形最值的.
科目:高中数学 来源: 题型:
【题目】已知 ,且方程 无实数根,下列命题:
(1)方程 一定有实数根;
(2)若 ,则不等式 对一切实数 都成立;
(3)若 ,则必存在实数 ,使 ;
(4)若 ,则不等式 对一切实数 都成立.
其中,正确命题的序号是________________.(把你认为正确的命题的所有序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】祖暅(公元前5-6世纪),祖冲之之子,是我国齐梁时代的数学家. 他提出了一条原理:“幂势既同,則积不容异. ”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等. 该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年. 椭球体是椭圆绕其轴旋转所成的旋转体. 如图将底面直径皆为,高皆为的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面上. 以平行于平面的平面于距平面任意高处可横截得到及两截面,可以证明知总成立. 据此,短轴长为,长轴为的椭球体的体积是 __________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电子公司开发一种智能手机的配件,每个配件的成本是15元,销售价是20元,月平均销售件,通过改进工艺,每个配件的成本不变,质量和技术含金量提高,市场分析的结果表明,如果每个配件的销售价提高的百分率为,那么月平均销售量减少的百分率为,记改进工艺后电子公司销售该配件的月平均利润是(元).
(1)写出与的函数关系式;
(2)改进工艺后,试确定该智能手机配件的售价,使电子公司销售该配件的月平均利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖出一个圆锥所得的几何体;图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )
A. ①② B. ①③ C. ②④ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一片成熟森林的总面积为 (近期内不再种植),计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.
(1)求每年砍伐面积的百分比;
(2)到今年为止,该森林已砍伐了多少年?
(3)今后最多还能砍伐多少年?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com