【题目】已知函数.
(1)求的最大值;
(2)证明:对任意的,都有;
(3)设,比较与的大小,并说明理由.
科目:高中数学 来源: 题型:
【题目】已知点为圆上一点,轴于点,轴于点,点满足(为坐标原点),点的轨迹为曲线.
(Ⅰ)求的方程;
(Ⅱ)斜率为的直线交曲线于不同的两点、,是否存在定点,使得直线、的斜率之和恒为0.若存在,则求出点的坐标;若不存在,则请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度. 药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:
根据图中提供的信息,下列关于成人使用该药物的说法中,不正确的是
A. 首次服用该药物1单位约10分钟后,药物发挥治疗作用
B. 每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒
C. 每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用
D. 首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)φ)﹣cos(ωx+φ)(),x=0和x是函数的y=f(x)图象的两条相邻对称轴.
(1)求f()的值;
(2)将y=f(x)的图象向右平移个单位后,再将所得的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求y=g(x)的单调区间,并求其在[]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,定点,是圆上的一动点,线段的垂直平分线交半径于点.
(1)求点的轨迹的方程;
(2)四边形的四个顶点都在曲线上,且对角线、过原点,若,求证:四边形的面积为定值,并求出此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;
②由变量和的数据得到其回归直线方程,则一定经过点;
③从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
④将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
⑤在回归直线方程中,当解释变量每增加一个单位时,预报变量平均增加0.1个单位,
其中真命题的序号是_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com