精英家教网 > 高中数学 > 题目详情

【题目】某商场销售某件商品的经验表明,该商品每日的销量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数。已知销售价格为5元/千克时,每日可售出该商品11千克

)求实数的值;

)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大。

【答案】;()当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.

【解析】

试题分析:)因为销售价格为5元/千克时,每日可售出该商品11千克即为时,代入解析式可求得a;(本小题考查用导数方法解决函数最值问题,先求出函数的导数,列表分析导函数在各部分区间内的单调情况,找到极值点,同时要注意函数的定义域.

试题解析:)根据题意可得,当时,,代入解析式得:,所以

)因为,所以该商品每日销售量为:

每日销售该商品所获得的利润为:

所以

所以,的变化情况如下表:

(3,4)

4

(4,6)

+

0

-

递增

极大值42

递减

由上表可得,是函数在区间(3,6)上的极大值点,也是最大值点;

所以当时,函数取得最大值42;

因此,当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:指数函数y(1a)x是R上的增函数,命题q不等式ax2+2x-1>0有解若命题p是真命题,命题q是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五棱锥中,平面平面,且

1已知点在线段上,确定的位置,使得平面

2分别在线段上,若沿直线将四边形向上翻折,恰好重合,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆左、右焦点分别为顶点直的直线交负半轴于,且.

1椭圆离心

2点的圆恰好与直线切,求椭圆方程;

3直线2中椭圆交于不同的两点内切圆的面积是否存在最大值?存在,个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆轴交于两点,过点的圆的切线为是圆上异于的一点,垂直于轴,垂足为的中点,延长分别交

1)若点,求以为直径的圆的方程,并判断是否在圆上;

2)当在圆上运动时,证明:直线恒与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量函数

(1)求函数的值域;

(2)求方程,在内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线经过点A (1,0).

(1)若直线与圆C相切,求直线的方程;

(2)若直线与圆C相交于PQ两点,求三角形CPQ面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高

B. 在线性回归分析中,回归直线不一定过样本点的中心

C. 在回归分析中, 为0.98的模型比为0.80的模型拟合的效果好

D. 自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经测算,某型号汽车在匀速行驶过程中每小时耗油量 (升)与速度 (千米/每小时) 的关系可近似表示为:.

)该型号汽车速度为多少时,可使得每小时耗油量最低?

)已知两地相距120公里,假定该型号汽车匀速从地驶向地,则汽车速度为多少时总耗油量最少?

查看答案和解析>>

同步练习册答案