精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率是,且过点.直线与椭圆相交于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)求的面积的最大值;

(Ⅲ)设直线 分别与轴交于点 .判断 大小关系,并加以证明.

【答案】(1)(2)(3)见解析

【解析】试题分析:

(1)由题意求得 所以椭圆的方程为

(2) 联立直线与椭圆的方程,由题意可得三角形的高为,面积表达式,当且仅当时, 的面积的最大值是

(3)结论为利用题意有.所以

试题解析:

解:(Ⅰ)设椭圆的半焦距为

因为椭圆的离心率是

所以 , 即

解得

所以椭圆的方程为

(Ⅱ)将代入

消去整理得

,解得

所以

到直线的距离为

所以的面积

当且仅当时,

所以的面积的最大值是

(Ⅲ).证明如下:

设直线 的斜率分别是

由(Ⅱ)得

所以直线 的倾斜角互补.

所以

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,为前天两只老鼠打洞之和,则_________________尺.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,讨论函数图像的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲,乙二人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球即终止,每个球在每一次被取出的机会是等可能的.

(Ⅰ)求袋中原有白球的个数:

(Ⅱ)求取球次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:任意两个等边三角形都是相似的.

①它的否定是_________________________________________________________

②否命题是_____________________________________________________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)函数,求函数的最小值;

(2)对任意,都有成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究学生的数学核素养与抽象(能力指标)、推理(能力指标)、建模(能力指标)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养;若,则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下结果:

学生编号

(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;

(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为,从数学核心素养等级不是一级的学生中任取一人,其综合指标为,记随机变量,求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)函数在区间是单调函数,求实数的取值范围;

(2)若存在,使得成立,求满足条件的最大整数

(3)如果对任意的都有成立,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空间四边形PABC的各边及对角线长度都相等,D、E、F、G分别是AB、BC、CA、AP的中点,下列四个结论中成立的是
①BC∥平面PDF
②DF⊥平面PAE
③平面GDF∥平面PBC
④平面PAE⊥平面ABC.

查看答案和解析>>

同步练习册答案