精英家教网 > 高中数学 > 题目详情

已知向量=(1,2),=(x,4),且,则x=  

考点:

数量积判断两个平面向量的垂直关系.

专题:

平面向量及应用.

分析:

由两向量垂直的坐标表示直接代入坐标求解.

解答:

解:由向量=(1,2),=(x,4),且

则1×x+2×4=0,所以x=﹣8.

故答案为﹣8.

点评:

本题考查了数量积判断两个向量的垂直关系,若=(a1,a2),=(b1,b2),则⇔a1a2+b1b2=0,此题是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(x,2),则向量
a
+2
b
与2
a
-
b
(  )
A、垂直的必要条件是x=-2
B、垂直的充要条件是x=
7
2
C、平行的充分条件是x=-2
D、平行的充要条件是x=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(x,1),若
a
b
,则实数x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(sinθ,cosθ),θ∈(0,π).
(1)若
a
b
,求sinθ及cosθ;
(2)若
a
.
b
,求tan2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(2,-2).
(1)设
c
=4
a
+
b
,求(
b
c
a

(2)若
a
b
a
垂直,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(cosα,sinα)
,设
m
=
a
+t
b
(t为实数).
(1)若
a
b
共线,求tanα的值;
(2)若α=
π
4
,求当|
m
|取最小值时实数t的值.

查看答案和解析>>

同步练习册答案