精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,椭圆的左右焦点分别为,椭圆右顶点为,点在圆.

1)求椭圆的标准方程;

2)点在椭圆上,且位于第四象限,点在圆上,且位于第一象限,已知,求直线的斜率.

【答案】(1)(2)

【解析】

1)由题意知的值,及之间的关系求出椭圆的标准方程;
2)设的坐标,设直线的方程,由向量的关系可得三点关系,直线与圆联立求出的坐标,直线与椭圆联立求出的坐标,再由向量的关系求出参数,进而求出直线的斜率.

1)圆的圆心,半径,与轴交点坐标为

在圆上,所以,从而

所以,所以椭圆的标准方程为.

2)由题,设点;点.

,由知点共线.

直线的斜率存在,可设为,则直线的方程为

,得,或

所以

,得,解得,或

所以

代入

,又,得

所以,又,可得直线的斜率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形是正方形, 平面 分别为 的中点.

1)求证: 平面

2)求平面与平面所成锐二面角的大小;

3)在线段上是否存在一点,使直线与直线所成的角为?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以数列的任意相邻两项为坐标的点,均在一次函数y=2x+k的图象上,数列满足,且.

1)求证数列为等比数列,并求出数列的公比;

2)设数列的前n项和分别为SnTn,若S6=T4S5=9,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先阅读参考材料,再解决此问题:

参考材料:求抛物线弧)与x轴及直线所围成的封闭图形的面积

解:把区间进行n等分,得个分点),过分点,作x轴的垂线,交抛物线于,并如图构造个矩形,先求出个矩形的面积和,再求,即是封闭图形的面积,又每个矩形的宽为,第i个矩形的高为,所以第i个矩形的面积为

所以封闭图形的面积为

阅读以上材料,并解决此问题:已知对任意大于4的正整数n

不等式恒成立,

则实数a的取值范围为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点.若曲线上存在两点,使为正三角形,则称型曲线.给定下列三条曲线:

其中型曲线的个数是

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列向量组中,可以把向量=(3,2)表示出来的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,平面PAC⊥平面ABC都是正三角形, EF分别是ACBC的中点,且PDABD.

(Ⅰ)证明:直线⊥平面

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司要在一条笔直的道路边安装路灯,要求灯柱AB与底面垂直,灯杆BC与灯柱AB所在的平面与道路走向垂直,路灯C采用锥形灯罩,射出的管线与平面ABC部分截面如图中阴影所示,路宽AD=24米,设

(1)求灯柱AB的高h(用表示);

(2)此公司应该如何设置的值才能使制作路灯灯柱AB和灯杆BC所用材料的总长度最小?最小值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,若点(异于点)是棱上一点,则满足所成的角为的点的个数为( )

A.0B.3C.4D.6

查看答案和解析>>

同步练习册答案