精英家教网 > 高中数学 > 题目详情
观察图2-1-4中图形规律,在其右下角的空格内画上合适的图形为(  )

A.                           B.                         C.                           D.

图2-1-4

解析:图形涉及三种符号;其中符号各有3个,且各自有二黑一白,所以缺一个黑色,即应画上才合适.

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
x2+a
.请完成以下任务:
(Ⅰ)探究a=1时,函数f(x)在区间[0,+∞)上的最大值.为此,我们列表如下
x 0 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2 4 6
y 0 0.396 0.769 1.6 1.951 2 1.967 1.846 1.698 1.6 0.941 0.649
请观察表中y值随x值变化的特点,解答以下两个问题.
(1)写出函数f(x),在[0,+∞)上的单调区间;指出在各个区间上的单调性,并对其中一个区间的单调性用定义加以证明.
(2)请回答:当x取何值时f(x)取得最大值,f(x)的最大值是多少?
(Ⅱ)按以下两个步骤研究a=1时,函数f(x)=
4x
x2+a
,(x∈R)
的值域.
(1)判断函数f(x)的奇偶性;
(2)结合已知和以上研究,画出函数f(x)的大致图象,指出函数的值域.
(Ⅲ)己知a=-1,f(x)的定义域为(-1,1),解不等式f(4-3x)+f(x-
3
2
)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

观察图2-1-4中图形规律,在其右下角的空格内画上合适的图形为(  )

A.                B.              C.                D.

图2-1-4

查看答案和解析>>

科目:高中数学 来源:2012年吉林省高考数学仿真模拟试卷9(理科)(解析版) 题型:解答题

当正三角形的边长为n(n∈N*)时,图(1)中点的个数为f3(n)=1+2+3+…+(n+1)=(n+1)(n+2);当正方形的边长为n时,图(2)中点的个数为f4(n)=(n+1)2;在计算图(3)中边长为n的正五边形中点的个数f5(n)时,观察图(4)可得f5(n)=f4(n)+f3(n-1)=(n+1)2+=(n+1)(3n+2);….则边长为n的正k边形(k≥3,k∈N)中点的个数fk(n)=   

查看答案和解析>>

科目:高中数学 来源:2009年上海市松江区高考数学二模试卷(文科)(解析版) 题型:解答题

当正三角形的边长为n(n∈N*)时,图(1)中点的个数为f3(n)=1+2+3+…+(n+1)=(n+1)(n+2);当正方形的边长为n时,图(2)中点的个数为f4(n)=(n+1)2;在计算图(3)中边长为n的正五边形中点的个数f5(n)时,观察图(4)可得f5(n)=f4(n)+f3(n-1)=(n+1)2+=(n+1)(3n+2);….则边长为n的正k边形(k≥3,k∈N)中点的个数fk(n)=   

查看答案和解析>>

同步练习册答案