精英家教网 > 高中数学 > 题目详情
如图1-4-8,在柱坐标系中,长方体的两个顶点坐标为A1(4,0,5),C1(6,,5),则此长方体外接球的体积为________________.

图1-4-8

思路解析:由长方体的两个顶点坐标为A1(4,0,5),C1(6,,5),

可知OA=4,OC=6,OO1=5,

则对角线长为,

那么球的体积为·π·()3=.

答案:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•奉贤区二模)如图,在正四棱柱ABCD-A1B1C1D1中,AB=4,AA1=8.
(1)求异面直线B1C与A1C1所成角的大小;(用反三角函数形式表示)
(2)若E是线段DD1上(不包含线段的两端点)的一个动点,请提出一个与三棱锥体积有关的数学问题(注:三棱锥需以点E和已知正四棱柱八个顶点中的三个为顶点构成);并解答所提出的问题.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三第五次质量检测文科数学试卷(解析版) 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,底面ABC为正三角形,M、N、G分别是棱CC1、AB、BC的中点,且.

(Ⅰ)求证:CN∥平面AMB1

(Ⅱ)求证: B1M⊥平面AMG.

【解析】本试题主要是考查了立体几何汇总线面的位置关系的运用。第一问中,要证CN∥平面AMB1;,只需要确定一条直线CN∥MP,既可以得到证明

第二问中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到线线垂直,B1M⊥AG,结合线面垂直的判定定理和性质定理,可以得证。

解:(Ⅰ)设AB1 的中点为P,连结NP、MP ………………1分

∵CM   ,NP   ,∴CM       NP, …………2分

∴CNPM是平行四边形,∴CN∥MP  …………………………3分

∵CN  平面AMB1,MP奂  平面AMB1,∴CN∥平面AMB1…4分

(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,

    ∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分

∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,  

设:AC=2a,则

…………………………8分

同理,…………………………………9分

∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,

………………………………10分

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省肇庆市高三数学复习必修2模块测试试卷D卷 题型:选择题

如图8-25,在三棱柱的侧棱A1A和B1B上各有一动点P,Q,且满足A1P=BQ,过P、Q、C三点的截面把棱柱分成两部分,则其体积之比为(    )

 

 

A.3∶1     B.2∶1     C.4∶1     D.∶1

 

查看答案和解析>>

科目:高中数学 来源:2008年上海市奉贤区高考数学二模试卷(文科)(解析版) 题型:解答题

如图,在正四棱柱ABCD-A1B1C1D1中,AB=4,AA1=8.
(1)求异面直线B1C与A1C1所成角的大小;(用反三角函数形式表示)
(2)若E是线段DD1上(不包含线段的两端点)的一个动点,请提出一个与三棱锥体积有关的数学问题(注:三棱锥需以点E和已知正四棱柱八个顶点中的三个为顶点构成);并解答所提出的问题.

查看答案和解析>>

同步练习册答案