【题目】已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为( )
A. 15 B. C. D.
【答案】C
【解析】分析:由三角形ABC的三边构成公差为4的等差数列,设三边长分别为a,a+4,a+8(a大于0),由三角形的边角关系得到a+8所对的角为120°,利用余弦定理列出关于a的方程,求出方程的解得到a的值,确定出三角形的三边长,利用三角形的面积公式即可求出三角形ABC的面积.
详解:由△ABC三边长构成公差为4的等差数列,设三边长分别为a,a+4,a+8(a>0),
∴a+8所对的角为120°,
∴cos120°=
整理得a2﹣2a﹣24=0,即(a﹣6)(a+4)=0,
解得a=6或a=﹣4(舍去),
∴三角形三边长分别为6,10,12,
则S△ABC=×6×10×sin120°=15.
故选C.
科目:高中数学 来源: 题型:
【题目】在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.
(1)求取出的两个球上标号为相邻整数的概率;
(2)求取出的两个球上标号之和与标号之积都不小于5的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对两个变量x , y进行回归分析,得到一组样本数据:(x1 , y1),(x2 , y2),…(xn , yn),则下列说法中不正确的是( )
A.由样本数据得到的回归方程 必过样本点的中心
B.残差平方和越小的模型,拟合的效果越好
C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好
D.两个随机变量的线性相关性越强,相关系数的绝对值越接近于1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2) 表示开始第4次发球时乙的得分,求 的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点 ,焦点在 轴上的椭圆,离心率 ,且椭圆过点 .
(1)求椭圆的方程;
(2)设椭圆左、右焦点分别为 ,过 的直线 与椭圆交于不同的两点 ,则 的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·新课标I卷)选修4-5:不等式选讲
已知函数f(x)=|x+1|-2|x-a|, a>0.
(1)当a=1时求不等式f(x)>1的解集;
(2)若f(x)图像与x轴围成的三角形面积大于6,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若向量 、 、 的起点与终点M、A、B、C互不重合且无三点共线,且满足下列关系(O是空间任一点),则能使向量 、 、 成为空间一组基底的关系是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了纪念“中国红军长征90周年”,增强学生对“长征精神”的深刻理解,在全校组织了一次有关“长征”的知识竞赛,经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得20分,答错得0分.假设甲队中每人答对的概率均为 ,乙队中3人答对的概率分别为 , , ,且各人回答正确与否相互之间没有影响,用 表示乙队的总得分.
(1)求 的分布列和均值;
(2)求甲、乙两队总得分之和等于40分且甲队获胜的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com