分析 先求出A=$[\begin{array}{l}{1}&{0}&{0}\\{0}&{\frac{1}{2}}&{\frac{3}{2}}\\{0}&{1}&{\frac{5}{2}}\end{array}]$,再求出A的转置矩阵,由此能求出|A|,A-1,(A*)-1.
解答 解:∵A=$\frac{1}{2}$$[\begin{array}{l}{2}&{0}&{0}\\{0}&{1}&{3}\\{0}&{2}&{5}\end{array}]$=$[\begin{array}{l}{1}&{0}&{0}\\{0}&{\frac{1}{2}}&{\frac{3}{2}}\\{0}&{1}&{\frac{5}{2}}\end{array}]$,
∴|A|=$|\begin{array}{l}{1}&{0}&{0}\\{0}&{\frac{1}{2}}&{\frac{3}{2}}\\{0}&{1}&{\frac{5}{2}}\end{array}|$=1×$\frac{1}{2}×\frac{5}{2}$-1×$1×\frac{3}{2}$=-$\frac{1}{4}$;
A11=$|\begin{array}{l}{\frac{1}{2}}&{\frac{3}{2}}\\{1}&{\frac{5}{2}}\end{array}|$=-$\frac{1}{4}$,A12=-$|\begin{array}{l}{0}&{\frac{3}{2}}\\{0}&{\frac{5}{2}}\end{array}|$=0,A13=$|\begin{array}{l}{0}&{\frac{1}{2}}\\{0}&{1}\end{array}|$=0,
A21=-$|\begin{array}{l}{0}&{0}\\{1}&{\frac{5}{2}}\end{array}|$=0,A22=$|\begin{array}{l}{1}&{0}\\{0}&{\frac{5}{2}}\end{array}|$=$\frac{5}{2}$,A23=-$|\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}|$=-1,
${A}_{31}^{\;}$=$|\begin{array}{l}{0}&{0}\\{\frac{1}{2}}&{\frac{3}{2}}\end{array}|$=0,${A}_{32}^{\;}$=-$|\begin{array}{l}{1}&{0}\\{0}&{\frac{3}{2}}\end{array}|$=-$\frac{3}{2}$,${A}_{33}^{\;}$=$|\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}|$=$\frac{1}{2}$,
∴A*=$[\begin{array}{l}{-\frac{1}{4}}&{0}&{0}\\{0}&{\frac{5}{2}}&{-\frac{3}{2}}\\{0}&{-1}&{\frac{1}{2}}\end{array}]$,
∴${A}^{-1}=\frac{1}{|A|}•{A}^{*}$=-4$[\begin{array}{l}{-\frac{1}{4}}&{0}&{0}\\{0}&{\frac{5}{2}}&{-\frac{3}{2}}\\{0}&{-1}&{\frac{1}{2}}\end{array}]$=$[\begin{array}{l}{1}&{0}&{0}\\{0}&{-10}&{6}\\{0}&{4}&{-2}\end{array}]$;
∵(A*|I)=$[\begin{array}{l}{-\frac{1}{4}}&{0}&{0}&{\;}&{1}&{0}&{0}\\{0}&{\frac{5}{2}}&{-\frac{3}{2}}&{\;}&{0}&{1}&{0}\\{0}&{-1}&{\frac{1}{2}}&{\;}&{0}&{0}&{1}\end{array}]$→$[\begin{array}{l}{1}&{0}&{0}&{\;}&{\;}&{-4}&{0}&{0}\\{0}&{1}&{-\frac{3}{5}}&{\;}&{\;}&{0}&{\frac{2}{5}}&{0}\\{0}&{0}&{-\frac{1}{10}}&{\;}&{\;}&{0}&{\frac{2}{5}}&{1}\end{array}]$→$[\begin{array}{l}{1}&{0}&{0}&{\;}&{\;}&{-4}&{0}&{0}\\{0}&{1}&{0}&{\;}&{\;}&{0}&{-2}&{-6}\\{0}&{0}&{1}&{\;}&{\;}&{0}&{-4}&{-10}\end{array}]$,
∴(A*)-1=$[\begin{array}{l}{-4}&{0}&{0}\\{0}&{-2}&{-6}\\{0}&{-4}&{-10}\end{array}]$.
点评 本题考查矩阵的行列式、逆矩阵、转置矩阵的求法,是中档题,解题时要熟练掌握基本概念.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com