精英家教网 > 高中数学 > 题目详情
如图,已知中心在原点,焦点在x轴上的椭圆经过点(),且它的左焦点F1将长轴分成2∶1,F2是椭圆的右焦点.

(1)求椭圆的标准方程;
(2)设P是椭圆上不同于左右顶点的动点,延长F1P至Q,使Q、F2关于∠F1PF2的外角平分线l对称,求F2Q与l的交点M的轨迹方程.
 解:(1)设椭圆的方程为(a>b>0),半焦距为c,则a2-b2=c2
∵ 椭圆经过点(),

又∵ 它的左焦点F将长轴分成2∶1,
∴ (a+c)∶(a-c)=2∶1,整理得a=3c.
联立①②③,即 解得a2=36,b2=32,c2=4.
∴ 椭圆的标准方程为.           ……………………4分
(2)∵ Q、F2关于∠F1PF2的外角平分线l对称,
∴ |PQ|=|PF2|,且M是F2Q的中点.
由椭圆的定义知|PF1|+|PF2|=12,
∴ |PF1|+|PQ|=12,即|F1Q|=12,
∴ Q的轨迹是以F1(-2,0)为圆心,12为半径的圆(除去与x轴的两个交点),其轨迹方程为(x+2)2+y2=144(y≠0). …………………7分
设M(x,y),Q(a,b),由(1)知F2(2,0),
  可整理得a=2x-2,b=2y,
∵ Q(a,b)在圆(x+2)2+y2=144(y≠0)上运动,
∴ (2x-2+2)2+(2y)2=144,即x2+y2=36.
∴ M的轨迹方程为x2+y2=36(y≠0).      ……………………10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知焦点在轴上,中心在坐标原点的椭圆C的离心率为,且过点(题干自编)
(I)求椭圆C的方程;
(II)直线分别切椭圆C与圆(其中)于两点,求的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆),其焦距为,若),则称椭圆为“黄金椭圆”.
(1)求证:在黄金椭圆)中,成等比数列.
(2)黄金椭圆)的右焦点为为椭圆上的
任意一点.是否存在过点的直线,使轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆)的左、右焦点分别是,以为顶点的菱形的内切圆过焦点.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设p:方程表示是焦点在y轴上的椭圆;q:三次函数
内单调递增,.求使“”为真命题的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是椭圆C:的左焦点和右焦点,O是坐标系原点, 且椭圆C的焦距为6, 过的弦两端点所成⊿的周长是.
(Ⅰ).求椭圆C的标准方程.
(Ⅱ)已知点是椭圆C上不同的两点,线段的中点为.
求直线的方程;
(Ⅲ)若线段的垂直平分线与椭圆C交于点,试问四点是否在同一个圆上,若是,求出该圆的方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,椭圆方程为,抛物线方程为.如图所示,过点轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点
(1)求满足条件的椭圆方程和抛物线方程;
(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线与椭圆有共同的焦点,点
是双曲线的渐近线与椭圆的一个交点,求椭圆与双曲线的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分14分)
已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点
面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
椭圆的两个焦点F1、F2,点P在椭圆C上,且PF1⊥F1F2,且|PF1|=
(I)求椭圆C的方程。
(II)以此椭圆的上顶点B为直角顶点作椭圆的内接等腰直角三角形ABC,这样的直角三角形是否存在?若存在,请说明有几个;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案