精英家教网 > 高中数学 > 题目详情

【题目】设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x),f(﹣ )=

【答案】
【解析】解:∵f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1﹣x), ∴ =f(﹣ )=﹣f( )=﹣2× (1﹣ )=﹣
所以答案是:﹣
【考点精析】通过灵活运用函数奇偶性的性质和函数的值,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数fx)=3x

(1)若fx)=8,求x的值;

(2)对于任意的x∈[0,2],[fx)-3]3x+13-m≥0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2-(a+2)x+lnx

(1)当a=1时,求曲线yf(x)在点(1,f(1))处的切线方程;

(2)若对任意x1x2∈(0,+∞),x1x2,有f(x1)+2x1f(x2)+2x2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2019·潍坊期末]某钢铁加工厂新生产一批钢管,为了了解这批产品的质量状况,检验员随机抽取了100件钢管作为样本进行检测,将它们的内径尺寸作为质量指标值,由检测结果得如下频率分布表和频率分布直方图:

分组

频数

频率

25.05~25.15

2

0.02

25.15~25.25

25.25~25.35

18

25.35~25.45

25.45~25.55

25.55~25.65

10

0.1

25.65~25.75

3

0.03

合计

100

1

(1)求

(2)根据质量标准规定:钢管内径尺寸大于等于25.75或小于25.15为不合格,钢管尺寸在为合格等级,钢管尺寸在为优秀等级,钢管的检测费用为0.5元/根.

(i)若从的5件样品中随机抽取2根,求至少有一根钢管为合格的概率;

(ii)若这批钢管共有2000根,把样本的频率作为这批钢管的频率,有两种销售方案:

①对该批剩余钢管不再进行检测,所有钢管均以45元/根售出;

②对该批剩余钢管一一进行检测,不合格产品不销售,合格等级的钢管50元/根,优等钢管60元/根.

请你为该企业选择最好的销售方案,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①正切函数图象的对称中心是唯一的;

②若函数的图像关于直线对称,则这样的函数是不唯一的;

③若是第一象限角,且,则

④若是定义在上的奇函数,它的最小正周期是,则

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sin(A﹣B), =(1,2sinB),且 =﹣sin2C,其中A、B、C分别为△ABC的三边a、b、c所对的角. (Ⅰ)求角C的大小;
(Ⅱ)若 ,且SABC= ,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,有下列说法:

①它的极大值点为-3,极小值点为3;②它的单调递减区间为[-2,2];

③方程有且仅有3个实根时,的取值范围是(18,54).

其中正确的说法有( )个

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足不等式组 ,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为 (t为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ. (Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于A、B两点,当α变化时,求|AB|的最小值.

查看答案和解析>>

同步练习册答案