精英家教网 > 高中数学 > 题目详情
已知直线y=kx+1与双曲线3x2-y2=1有A、B两个不同的交点.
(1)如果以AB为直径的圆恰好过原点O,试求k的值;
(2)是否存在k,使得两个不同的交点A、B关于直线y=2x对称?试述理由.
(1)设A(x1,kx1+1),B(x2,kx2+1),则以AB为直径的圆恰好过原点O的充要条件是AO⊥BO,
∴x1x2+(kx1+1)(kx2+1)=0,即(k2+1)x1x2+k(x1+x2)+1=0…①
y=kx+1
3x2-y2=1
消去y得   (3-k2)x2-2kx-2=0…②∴
x1+x2=
2k
3-k2
x1x2=-
2
3-k2

将其代入①得
-2(k2+1)
3-k2
+
2k2
3-k2
+1=0
,解得k=1或k=-1.
当k=1时,方程②为2x2-2x-2=0,有两个不等实根;
当k=-1时,方程②为x2+x-1=0,有两个不等实根.
故当k=1或k=-1时,以AB为直径的圆恰好过原点O.
(2)若A(x1,kx1+1),B(x2,kx2+1)关于直线y=2x对称,
k=-
1
2
(kx1+1)+(kx2+1)=2(x1+x2)

将④整理得(k-2)(x1+x2)+2=0.
因为x1+x2=
2k
2-k2
,所以
2k(k-2)
3-k2
+2=0
,解之,得k=
3
2
.这个结果与③矛盾.
故不存在这样的k,使两点A、B关于直线y=2x对称.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)已知直线y=kx+1(k∈R)与椭圆
x2
2
+
y2
m
=1总有交点,则m的取值范围为(  )
A、(1,2]
B、[1,2)
C、[1,2)∪[2,+∞)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=kx+1(k∈R)与焦点在x轴上的椭圆
x2
5
+
y2
t
=1恒有公共点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=kx-1与双曲线x2-y2=1的左支交于不同两点A、B,若另有一条直线l经过P(-2,0)及线段AB的中点Q.
(1)求k的取值范围;
(2)求直线l在y轴上的截距b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
3
2
,原点到过A(a,0),B(0,-b)两点的直线的距离是
4
5
5

(1)求椭圆的方程;
(2)已知直线y=kx+1(k≠0)交椭圆于不同的两点E,F,且E,F都在以B为圆心的圆上,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=kx-1与双曲线x2-y2=4没有公共点,则实数k的取值范围为
 

查看答案和解析>>

同步练习册答案