精英家教网 > 高中数学 > 题目详情
已知幂函数f(x)=x-m2+2m+3(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数
(1)求函数f(x)的解析式;
(2)设函数g(x)=
1
4
f(x)+ax3+
9
2
x2-b(x∈R)
,其中a,b∈R.若函数g(x)仅在x=0处有极值,求a的取值范围.
分析:(1)先根据f(x)在区间(0,+∞)上是单调增函数,结合幂函数的性质得出-m2+2m+3>0,据此求得m的值,从而得到函数f(x)的解析式.
(2)先求导数:g'(x)=x(x2+3ax+9),为使g(x)仅在x=0处有极值,必须x2+3ax+9≥0恒成立,再利用二次函数的根的判断式即可求得a的取值范围.
解答:解:(1)∵f(x)在区间(0,+∞)上是单调增函数,
∴-m2+2m+3>0即m2-2m-3<0∴-1<m<3,又m∈z,∴m=0,1,2
而m=0,2时,f(x)=x3不是偶函数,m=1时,f(x)=x4是偶函数,∴f(x)=x4
(2)g'(x)=x(x2+3ax+9),显然x=0不是方程x2+3ax+9=0的根.
为使g(x)仅在x=0处有极值,必须x2+3ax+9≥0恒成立,
即有△=9a2-36≤0,解不等式,得a∈[-2,2].
这时,g(0)=-b是唯一极值.∴a∈[-2,2].
点评:本小题主要考查函数单调性的应用、函数奇偶性的应用、不等式的解法等基础知识,考查运算求解能力,考查转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数f(x)=x-m2+2m+3(m∈Z)为偶函数且在区间(0,+∞)上是单调增函数.
(1)求函数f(x)的解析式;
(2)设函数g(x)=2
f(x)
-qx+q-1
,若g(x)>0对任意x∈[-1,1]恒成立,求实数q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

.已知幂函数f(x)=xk2-2k-3(k∈N*)的图象关于y轴对称,且在区间(0,+∞)上是减函数,
(1)求函数f(x)的解析式;
(2)若a>k,比较(lna)0.7与(lna)0.6的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=(m2-m-1)xm2-2m-1,满足f(-x)=f(x),则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=xm2-2m-3(m∈Z)的图象与x轴、y轴无公共点且关于y轴对称.
(1)求m的值;
(2)画出函数y=f(x)的图象(图象上要反映出描点的“痕迹”).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x
3
2
+k-
1
2
k2
(k∈Z)

(1)若f(x)为偶函数,且在(0,+∞)上是增函数,求f(x)的解析式;
(2)若f(x)在(0,+∞)上是减函数,求k的取值范围.

查看答案和解析>>

同步练习册答案