精英家教网 > 高中数学 > 题目详情
若点O和点F分别为椭圆
x2
4
+
y2
3
=1的中心和左焦点,点P为椭圆上点的任意一点,则
OP
FP
的最大值为
6
6
分析:设P(x,y),由数量积运算及点P在椭圆上可把
OP
FP
表示为x的二次函数,根据二次函数性质可求其最大值.
解答:解:设P(x,y),
OP
FP
=(x,y)•(x+1,y)=x2+x+y2
又点P在椭圆上,故
x2
4
+
y2
3
=1,
所以x2+x+(3-
3
4
x2
)=
1
4
x2
+x+3=
1
4
(x+2)2
+2,
又-2≤x≤2,
所以当x=2时,
1
4
(x+2)2
+2取得最大值为6,即
OP
FP
的最大值为6,
故答案为:6.
点评:本题考查平面向量的数量积运算、椭圆的简单性质,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点O和点F分别为椭圆
x2
4
+
y2
3
=1
的中心和左焦点,点P为椭圆上的任意一点,则
OP
FP
的最大值为(  )
A、2B、3C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O和点F分别为椭圆
x2
9
+
y2
5
=1
的中心和左焦点,点P为椭圆上任意一点,则
OP
FP
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海)若点O和点F分别为椭圆
x22
+y2=1的中心和左焦点,点P为椭圆上的任意一点,则|OP|2+|PF|2的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头一模)若点O和点F分别为双曲线
x2
4
-
y2
5
=1
的中心和左焦点,点P为双曲线右支上的任意一点,则
OP
FP
的最小值为(  )

查看答案和解析>>

同步练习册答案