精英家教网 > 高中数学 > 题目详情
(2012•许昌县一模)如图,四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ASCD.设AB=2.
(I)证明:AB⊥平面VAD;
(II)若E是VA上的动点,当面DCE⊥面VAB时,求三棱锥V-ECD的体积.
分析:(Ⅰ)由已知中平面VAD⊥底面ABCD,ABCD是正方形,我们根据正方形的性质及面面垂直的性质定理,得到AB⊥平面VAD;
(Ⅱ)由(Ⅰ)可知AB⊥平面VAD,说明平面VAD⊥平面ECD.当E是VA的中点时,证明面DCE⊥面VAB,利用三棱锥V-ECD的体积等于三棱锥C-EVD的体积,求解即可.
解答:(Ⅰ)证明:平面VAD⊥平面ABCD,底面是正方形,∴AB⊥AD,
AB?平面ABCD,
平面VAD∩平面ABCD=AD,
∴AB⊥面VAD.4分
(Ⅱ)解:由(Ⅰ)可知AB⊥平面VAD,
∴CD⊥平面VAD.
∴平面VAD⊥平面ECD.
又∵△VAD是正三角形,
∴当E是VA的中点时,ED⊥VA.
∴VA⊥平面EDC.
∴面DCE⊥面VAB
三棱锥V-ECD的体积等于三棱锥C-EVD的体积,
VC-VED=
1
3
S△VED•DC
=
1
3
×
1
2
×
3
×1×2=
3
3
.12分
点评:本题考查直线与平面垂直,几何体的体积的求法,考查计算能力,转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•许昌县一模)若α是锐角,且cos(α+
π
3
)=-
3
3
,则sinα的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌县一模)在△ABC中,角A,B,C所对的边分别为a,b,c,若a2+b2=3c2,则cosC最小值为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌县一模)某学校对高一新生的体重进行了抽样调查.右图是根据抽样调查后的数据绘制的频率分布直方图,其中体重(单位:kg)的范围是[45,70],样本数据分组为[45,50),[50,55),[55,60),[60,65),[65,70],已知被调查的学生中体重不足55kg的有36,则被调查的高一新生体重在50kg至65kg的人数是.(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌县一模)设函数f(x)=sin(2x-
π
2
)
,x∈R,则f(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌县一模)一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的体积为(  )

查看答案和解析>>

同步练习册答案