精英家教网 > 高中数学 > 题目详情

【题目】如图是一个半径为2千米,圆心角为的扇形游览区的平面示意图是半径上一点,是圆弧上一点,且.现在线段,线段及圆弧三段所示位置设立广告位,经测算广告位出租收入是:线段处每千米为元,线段及圆弧处每千米均为元.设弧度,广告位出租的总收入为元.

(1)求关于的函数解析式,并指出该函数的定义域;

(2)试问:为何值时,广告位出租的总收入最大?并求出其最大值.

【答案】(1);(2)当时,广告位出租的总收入最大,最大值为元.

【解析】

1)根据题意,利用正弦定理求得OC的值,再求弧长DB,求出函数y的解析式,写出x的取值范围;

2)求函数y的导数,利用导数判断函数的单调性,求出函数的最值和对应x的值.

(1)因为,所以.

中,.

由正弦定理,得

.

又圆弧长为

所以

.

(2)记

,得.

变化时,的变化如下表:

所以处取得极大值,这个极大值就是最大值,即.

故当时,广告位出租的总收入最大,最大值为元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点,离心率为.

1求椭圆的方程;

2 是过点且互相垂直的两条直线,其中交圆 两点, 交椭圆于另一个点,求面积取得最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如表:

年份

1

2

3

4

5

维护费万元

y关于t的线性回归方程;

若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点At1)为函数yax2+bx+4ab为常数,且a≠0)与yx图象的交点.

1)求t

2)若函数yax2+bx+4的图象与x轴只有一个交点,求ab

3)若1≤a≤2,设当x≤2时,函数yax2+bx+4的最大值为m,最小值为n,求mn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数上单调递减,求实数的取值范围;

2)是否存在实数,使得上的值域恰好是?若存在,求出实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业2017年的纯利润为500万元,因设备老化等原因,企业的生产能力逐年下降,若不能进行技术改造,预测从2018年起每年比上一年纯利润减少20万元,2018年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第年(以2018年为第一年)的利润为万元(为正整数).

(1)设从今年起的前年,若该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元(须扣除技术改造资金),求的表达式;

(2)依上述预测,从2018年起该企业至少经过多少年,进行技术改造后的累计利润超过不进行技术改造的累计纯利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数).

(1)若函数与函数处有相同的切线,求实数的值;

2)若,且,证明:

3)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Px0y0)(x0)在椭圆Cab0)上,若点M为椭圆C的右顶点,且POPM O为坐标原点),则椭圆C的离心率e的取值范围是

A. 0 B. (0,1 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数满足 为数列的前项和,且,则__________

查看答案和解析>>

同步练习册答案