精英家教网 > 高中数学 > 题目详情
9.若f(x)为偶函数,当x>0时,f(x)=-x2+x,求:当x<0时,f(x)的解析式.

分析 由x>0时f(x)的解析式,设x<0,则-x>0,得f(-x)的解析式,又f(x)是偶函数,得出x<0时f(x)的解析式.

解答 解;当x<0时,-x>0,
则f(-x)=-(-x)2+(-x)=-x2-x
因为f(x)是为偶函数,
所以f(-x)=f(x),
所以f(x)=-x2-x;
即x<0,f(x)=-x2-x;
故答案为:-x2-x

点评 本题利用函数的奇偶性考查了求函数解析式的知识,是教材中的基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若函数$f(x)={log_{a+2}}(a{x^2}-3x+2)$的值域为R,则a的取值范围是$[0,\frac{9}{8}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且焦距为4.
(1)求椭圆的方程;
(2)直线l过点P(0,2)且与椭圆相交于A、B两点,当△AOB面积取得最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|}(x≠1)}\\{1(x=1)}\end{array}\right.$,若关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,则b+c值为(  )
A.0B.1C.-1D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知中心在原点的椭圆C的一个焦点为F(0,1),离心率为$\frac{1}{2}$,则椭圆C的标准方程为$\frac{y^2}{4}+\frac{x^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=x3-px2-qx的图象与x轴相切于点(1,0),则f(x)的单调增区间为(-∞,$\frac{1}{3}$)或(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.对于任意的$m∈[\frac{1}{2},3]$,不等式t2+mt>2m+4恒成立,则实数t的取值范围是(-∞,-5)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$的定义域为[-3,3].
(1)判断函数f(x)的单调性,并用定义给出证明;
(2)若实数m满足f(m-1)<f(1-2m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个人打靶时连续射击三次,与事件“至多有两次中靶”互斥的事件是(  )
A.至少有两次中靶B.三次都中靶C.只有一次中靶D.三次都不中靶

查看答案和解析>>

同步练习册答案