【题目】
已知函数f(x)=x2+2ax+3,x∈[-4,6].
(1)当a=-2时,求f(x)的最值;
(2)若f(x)在区间[-4,6]上是单调函数.求实数a的取值范围.
【答案】(1)35 (2) a≤-6,或a≥4
【解析】试题分析:(1) 当a=-2时,f(x)=x2-4x+3=(x-2)2-1,根据二次函数的单调性得出函数的最值(2)二次函数的对称轴为x=-a,根据图像得出[-4,6]在轴的左侧或在轴的右侧,即-a≤-4,或-a≥6得解.
试题解析:
(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],
∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增.∴f(x)的最小值是f(2)=-1.又f(-4)=35,f(6)=15,故f(x)的最大值是35.
(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4,或-a≥6,即a≤-6,或a≥4.
科目:高中数学 来源: 题型:
【题目】函数f(x)在x=x0处导数存在.若p:f′(x0)=0,q:x=x0是f(x)的极值点,则( )
A. p是q的充分必要条件
B. p是q的充分条件,但不是q的必要条件
C. p是q的必要条件,但不是q的充分条件
D. p既不是q的充分条件,也不是q的必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c是三条不同的直线,命题“a∥b且a⊥cb⊥c”是正确的,如果把a,b,c中的两个或三个换成平面,在所得的命题中,真命题有( )
A.1个 B.2个
C.3个 D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)对于任意m,n∈R,都有f(m+n)=f(m)+f(n)﹣1,并且当x>0时f(x)>1.
(1)求证:函数f(x)在R上为增函数;
(2)若f(3)=4,解不等式f(a2+a﹣5)<2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知P={x|-1<x<1},Q={x|-2<x<0},则P∪Q=
A. (-2,1) B. (-1,0) C. (0,1) D. (-2,-1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产某种产品,用传送带将产品送至下一工序,质量员每隔10分钟在传送带某一位置取一件产品进行检验,这种抽样的方法为( )
A. 分层抽样 B. 简单随机抽样 C. 系统抽样 D. 其它抽样方式
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从编号为1,2,…,79,80的80件产品中,采用系统抽样的方法抽取容量为5的样本,若编号为10的产品在样本中,则该样本中产品的最大编号为( )
A. 72 B. 73 C. 74 D. 75
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com