精英家教网 > 高中数学 > 题目详情

设函数f(x)=x3+ax2-a2x+m(a>0).
(1)若a=1时函数f(x)有三个互不相同的零点,求m的取值范围;
(2)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围.

解:(1)当a=1时,f(x)=x3+x2-x+m,
∵f(x)有三个互不相同的零点,
∴f(x)=x3+x2-x+m=0,即m=-x3-x2+x有三个互不相同的实数根.
令g(x)=-x3-x2+x,则g′(x)=-(3x-1)(x+1)
令g′(x)>0,可得-1<x<;令g′(x)<0,可得x<-1或x>
∴g(x)在(-∞,-1)和(,+∞)上为减函数,在(-1,)上为增函数,
∴g(x)极小=g(-1)=-1,g(x)极大=g()=
∴m的取值范围是(-1,) …(6分)
(2)由题设可知,方程f′(x)=3x2+2ax-a2=0在[-1,1]上没有实数根,
,解得a>3 …(12分)
分析:(1)当a=1时,f(x)=x3+x2-x+m,f(x)有三个互不相同的零点,即m=-x3-x2+x有三个互不相同的实数根,构造函数确定函数的单调性,可得函数的极值,从而可得m的取值范围;
(2)要使函数f(x)在x∈[-1,1]内没有极值点,只需f′(x)=0在(-1,1)上没有实根即可.
点评:本题考查利用导数求闭区间上函数的最值,利用导数研究函数的单调性,还考查了变量分离的思想方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 

查看答案和解析>>

同步练习册答案