精英家教网 > 高中数学 > 题目详情
双曲线
x2
25
-
y2
16
=1
上一点P的两条焦半径夹角为60°,F1,F2为焦点,则△PF1F2的面积为
 
分析:由双曲线的性质知|PF1|2+|PF2|2-2|PF1||PF2|=100…(1),由余弦定理可知|PF1|2+|PF2|2-2|PF1||PF2|cos60°=164…(2),由(1)、(2)联立方程组,解得|PF1||PF2|=64,由此可以求出△PF1F2的面积.
解答:解:∵|PF1|-|PF2|=10,∴|PF1|2+|PF2|2-2|PF1||PF2|=100…(1)
∵双曲线
x2
25
-
y2
16
=1
上一点P的两条焦半径夹角为60°,
∴由余弦定理可知|PF1|2+|PF2|2-2|PF1||PF2|cos60°=164…(2),
由(1)、(2)联立方程组,解得|PF1||PF2|=64,
∴△PF1F2的面积=
1
2
|PF1| |PF2| sin60°
=16
3

答案:16
3
点评:利用余弦定理解决圆锥曲线问题是求解高考题的常规方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k,则动点P的轨迹为双曲线;
②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若
OP
=
1
2
OA
+
OB
),则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1有相同的焦点.
其中真命题的序号为
 
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x225
-y2=1
左支上一点M到右焦点F的距离为18. N是线段MF的中点,O为坐标原点,则|ON|的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列关于圆锥曲线的命题:
①设A,B为两个定点,若|PA|-|PB|=2,则动点P的轨迹为双曲线;
②设A,B为两个定点,若动点P满足|PA|=10-|PB|,且|AB|=6,则|PA|的最大值为8;
③方程2x2-5x+2=0的两根可分别作椭圆和双曲线的离心率;
④双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+
y2=1有相同的焦点.
其中真命题的序号
②③④
②③④
(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

以下三个命题中:
①设A、B为两个定点,k为非零常数,|PA|-|PB|=k,则动点P的轨迹为双曲线;
②双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1
有相同的焦点.
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
其中真命题的序号为
②③
②③
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中,其中真命题的序号有(  )
①设A、B为两个定点,k为正常数,|PA|+|PB|=k,则动点P的轨迹为椭圆;
②双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④平面上到定点P及定直线l的距离相等的点的轨迹是抛物线.

查看答案和解析>>

同步练习册答案