精英家教网 > 高中数学 > 题目详情
已知函数f (x)=eg(x),g (x)=
kx-1x+1
(e是自然对数的底),
(1)若函数g (x)是(1,+∞)上的增函数,求k的取值范围.
(2)若对任意的x>0,都有f (x)<x+1,求满足条件的最大整数k的值.
分析:(1)先求出导函数g′(x),然后将g(x)是(1,+∞)上的增函数转化成g′(x)>0在(1,+∞)上恒成立,即可求出k的取值范围;
(2)先由条件得到f(1)<2?e
k-2
2
<2?k<2ln2+1<3猜测最大整数k=2,然后证明e
2x-1
x+1
<x+1对任意x>0恒成立,转化成ln(x+1)+
3
x+1
>2,设h(x)=ln(x+1)+
3
x+1
,然后利用导数求出h(x)在x>0上的最小值,即可证得整数k的最大值为2.
解答:解:(1)设g (x)=
kx-1
x+1
?g′(x)=
k(x+1)-kx+1
(x+1)2
=
k+1
(x+1)2

因为g(x)是(1,+∞)上的增函数,
所以g′(x)>0,得到k>-1;所以k的取值范围为(-1,+∞)
(2)由条件得到f(1)<2?e
k-2
2
<2?k<2ln2+1<3猜测最大整数k=2,
现在证明e
2x-1
x+1
<x+1对任意x>0恒成立,e
2x-1
x+1
<x+1等价于,
2-
3
x+1
<(lnx+1)?ln(x+1)+
3
x+1
>2,
设h(x)=ln(x+1)+
3
x+1
?h′(x)=
1
x+1
-
3
(x+1)2
=
x-2
(x+1)2

故x∈(0,2)时,h′(x)<0,当x∈(2,+∞)时,h′(x)>0,
所以对任意的x>0都有h(x)≥h(2)=ln3+1>2,
e
2x-1
x+1
<x+1对任意x>0恒成立,
所以整数k的最大值为2.
点评:本题主要考查了根据单调性求参数k的问题,以及不等式恒成立等基础知识,考查灵活运用转化和划归的思想方法进行探索、分析与解决问题的综合能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案