精英家教网 > 高中数学 > 题目详情

已知函数f(x)=kx,g(x)=数学公式
(1)若不等式f(x)=g(x)在区间 (数学公式)内的解的个数;
(2)求证:数学公式

解:(Ⅰ)由f(x)=g(x),得
所以,方程f(x)=g(x),在区间内解的个数即为函数的图象与直线y=k交点的个数.
当h′(x)=0时,x=
当x在区间内变化时,h′(x),h(x)变化如下:


时,y=-e2;当时,;当x=e时,
所以,(1)当或k<-e2时,该方程无解
(2)当时,该方程有一个解;
(3)当时,该方程有两个解.
(Ⅱ)由(Ⅰ)知



∴∴

=<1



分析:(I)将方程的解的个数问题转化为函数的图象的交点个数问题;通过导数研究函数的单调性及极值;通过对k与函数h(x)的极值的大小关系的讨论得到方程解的情况.
(II)通过(I)得到的函数的单调性,通过对不等式放缩,利用数列的裂项求和的方法证出不等式.
点评:本题考查通过导函数研究函数的单调性、求函数的极值、求函数交点的个数,以及通过放缩的方法证明不等式、考查利用裂项法求数列的和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,设t=logax+logxa.
(Ⅰ)当x∈(1,a)∪(a,+∞)时,将f(x)表示成t的函数h(t),并探究函数h(t)是否有极值;
(Ⅱ)当k=4时,若对?x1∈(1,+∞),?x2∈[1,2],使f(x1)≤g(x2),试求实数b的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
k+1x
(k<0),求使得f(x+k)>1成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=k•a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(1)求实数k,a的值;
(2)若函数g(x)=
f(x)-1f(x)+1
,试判断函数g(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖二模)给出以下五个命题:
①命题“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函数f(x)=k•cosx的图象经过点P(
π
3
,1),则函数图象上过点P的切线斜率等于-
3

③a=1是直线y=ax+1和直线y=(a-2)x-1垂直的充要条件.
④函数f(x)=(
1
2
)x-x
1
3
在区间(0,1)上存在零点.
⑤已知向量
a
=(1,-2)
与向量
b
=(1,m)
的夹角为锐角,那么实数m的取值范围是(-∞,
1
2

其中正确命题的序号是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(已知函数f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,设t=logax+logxa.
(Ⅰ)当x∈(1,a)∪(a,+∞)时,试将f(x)表示成t的函数h(t),并探究函数h(t)是否有极值;
(Ⅱ)当k=4时,若对任意的x1∈(1,+∞),存在x2∈[1,2],使f(x1)≤g(x2),试求实数b的取值范围..

查看答案和解析>>

同步练习册答案