精英家教网 > 高中数学 > 题目详情
精英家教网如图,在矩形ABCD内,两个圆M、N分别与矩形两边相切,且两圆互相外切.若矩形的长和宽分别为9和8,试把两个圆的面积之和S表示为圆M半径x的函数关系式,并求S的最大值和最小值.
分析:由图形利用勾股定理建立两圆半径的关系式,利用面积公式得到面积关于关于圆M半径x的函数,利用二次函数在某个区间上的最值的求法来求得最值.
解答:解:设圆N的半径为r,
过点M,N分别作矩形两边的平行线,易知:[9-(x+r)]2+[8-(x+r)]2=(x+r)2
解得:x+r=5或x+r=29(舍)
因而S=πx2+πr2=π(2x2-10x+25).
2x≤8
2r≤8
r=5-x
,则1≤x≤4,
易知:当x=
5
2
时,Smin=
25
2
π

当x=1或x=4时,Smax=17π.
Smin=
25
2
π
,Smax=17π.
点评:考查几何图形的位置关系转换为函数的能力与一元二次函数求最值的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=2BC,P,Q分别为线段AB,CD的中点,EP⊥平面ABCD.
(1) 求证:AQ∥平面CEP;
(2) 求证:平面AEQ⊥平面DEP.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,已知AB=2AD=4,E为AB的中点,现将△AED沿DE折起,使点A到点P处,满足PB=PC,设M、H分别为PC、DE的中点.
(1)求证:BM∥平面PDE;
(2)线段BC上是否存在一点N,使BC⊥平面PHN?试证明你的结论;
(3)求△PBC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=3
3
,BC=3,沿对角线BD将BCD折起,使点C移到点C′,且C′在平面ABD的射影O恰好在AB上
(1)求证:BC′⊥面ADC′;
(2)求二面角A-BC′-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,已知AB=3,AD=1,E、F分别是AB的两个三等分点,AC,DF相交于点G,建立适当的平面直角坐标系:
(1)若动点M到D点距离等于它到C点距离的两倍,求动点M的轨迹围成区域的面积;
(2)证明:E G⊥D F.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=
12
BC,E为AD的中点,将△ABE沿BE折起,使平面ABE⊥平面BCDE.
(1)求证:CE⊥AB;
(2)在线段BC上找一点F,使DF∥平面ABE.

查看答案和解析>>

同步练习册答案