【题目】甲、乙两家鞋帽商场销售同一批品牌运动鞋,每双标价为800元,甲、乙两商场销售方式如下:在甲商场买一双售价为780元,买两双每双售价为760元,依次类排,每多买一双则所买各双售价都再减少20元,但每双售价不能低于440元;乙商场一律按标价的75%销售.
(1)分别写出在甲、乙两商场购买双运动鞋所需费用的函数解析式和;
(2)某单位需购买一批此类品牌运动鞋作为员工福利,问:去哪家商场购买花费较少?
【答案】(1),;(2)见解析
【解析】
(1)结合甲商场的销售方式,可得时,去甲商场购买的单价为元,时,去甲商场购买的单价为440元;去乙商场购买单价为元,进而可求出和的解析式;
(2)分和两种情况,讨论和的大小关系,即可求出答案.
(1)由题意,,
由,可得当时,去甲商场购买运动鞋的单价为元,此时所需费用为;当时,去甲商场购买运动鞋的单价为440元,所需费用为元;
去乙商场购买运动鞋单价一直为元,所需费用为元.
则,.
(2)当且时,成立;
当且时,
令,解得,
令,解得,
令,解得,
所以,该单位购买少于10双,去乙商场花费较少,若购买10双,则去两家商场花费相同,若购买超过10双,则去甲商场花费较少.
科目:高中数学 来源: 题型:
【题目】设函数的反函数为,若存在函数使得对函数定义域内的任意都有,则称函数为函数的“Inverse”函数.
(1)判断下列哪个函数是函数的“Inverse”函数并说明理由.
①;②;
(2)设函数存在反函数,证明函数存在唯一的“Inverse”函数的充要条件是函数的值域为;
(3)设函数存在反函数,函数为的一个“Inverse”函数,记,其中,若对函数定义域内的任意都有,求所有满足条件的函数的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为15000元.旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团的人数不超过35人时,飞机票每张收费800元;若旅游团的人数多于35人,则给予优惠,每多1人,机票费每张减少10元,但旅游团的人数最多有60人.设旅行团的人数为人,飞机票价格为元,旅行社的利润为元.
(1)写出飞机票价格元与旅行团人数之间的函数关系式;
(2)当旅游团的人数为多少时,旅行社可获得最大利润?求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
在△ABC中,内角A,B,C所对的边分别为a,b,c.已知acosC+ccosA=2bcosA.
(1)求角A的值;
(2)求sinB+sinC的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)已知函数f(x)=
(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.
(2)求该函数在区间[1,4]上的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了让学生更多的了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:
序号 | 分组(分数) | 组中值 | 频数(人数) | 频率 |
1 | 65 | ① | 0.12 | |
2 | 75 | 20 | ② | |
3 | 85 | ③ | 0.24 | |
4 | 95 | ④ | ⑤ | |
合计 | 50 | 1 |
(1)填充频率分布表中的空格;
(2)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某桶装水经营部每天的房租、人员工资等固定成本为300元,每桶水的进价是8元,销售单价与日均销售量的关系如表所示:
销售单价/元 | 9 | 10 | 11 | 12 | 13 | 14 |
日均销售量/桶 | 550 | 500 | 450 | 400 | 350 | 300 |
请根据以上数据分析,这个店怎样定每桶水的单价才能获得最大利润?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对数函数g(x)=1ogax(a>0,a≠1)和指数函数f(x)=ax(a>0,a≠1)互为反函数.已知函数f(x)=3x,其反函数为y=g(x).
(Ⅰ)若函数g(kx2+2x+1)的定义域为R,求实数k的取值范围;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定义在I上的函数F(x),如果满足:对任意x∈I,总存在常数M>0,都有-M≤F(x)≤M成立,则称函数F(x)是I上的有界函数,其中M为函数F(x)的上界.若函数h(x)=,当m≠0时,探求函数h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线 的极坐标方程为:.
(I)若曲线,参数方程为:(为参数),求曲线的直角坐标方程和曲线的普通方程
(Ⅱ)若曲线,参数方程为 (为参数),,且曲线,与曲线交点分别为,求的取值范围,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com