精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两家鞋帽商场销售同一批品牌运动鞋,每双标价为800元,甲、乙两商场销售方式如下:在甲商场买一双售价为780元,买两双每双售价为760元,依次类排,每多买一双则所买各双售价都再减少20元,但每双售价不能低于440元;乙商场一律按标价的75%销售.

1)分别写出在甲、乙两商场购买双运动鞋所需费用的函数解析式

2)某单位需购买一批此类品牌运动鞋作为员工福利,问:去哪家商场购买花费较少?

【答案】1;(2)见解析

【解析】

1)结合甲商场的销售方式,可得,去甲商场购买的单价为,时,去甲商场购买的单价为440;去乙商场购买单价为,进而可求出的解析式;

2)分两种情况,讨论的大小关系,即可求出答案.

1)由题意,,

,可得当,去甲商场购买运动鞋的单价为,此时所需费用为;当时,去甲商场购买运动鞋的单价为440,所需费用为;

去乙商场购买运动鞋单价一直为元,所需费用为元.

,.

2)当时,成立;

时,

,解得,

,解得,

,解得,

所以,该单位购买少于10双,去乙商场花费较少,若购买10双,则去两家商场花费相同,若购买超过10双,则去甲商场花费较少.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数的反函数为,若存在函数使得对函数定义域内的任意都有,则称函数为函数的“Inverse”函数.

1)判断下列哪个函数是函数的“Inverse”函数并说明理由.

;②

2)设函数存在反函数,证明函数存在唯一的“Inverse”函数的充要条件是函数的值域为

3)设函数存在反函数,函数的一个“Inverse”函数,记,其中,若对函数定义域内的任意都有,求所有满足条件的函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为15000元.旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团的人数不超过35人时,飞机票每张收费800元;若旅游团的人数多于35人,则给予优惠,每多1人,机票费每张减少10元,但旅游团的人数最多有60人.设旅行团的人数为人,飞机票价格为元,旅行社的利润为元.

(1)写出飞机票价格元与旅行团人数之间的函数关系式;

(2)当旅游团的人数为多少时,旅行社可获得最大利润?求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

△ABC中,内角ABC所对的边分别为abc.已知acosCccosA2bcosA

1)求角A的值;

2)求sinBsinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让学生更多的了解数学史知识,某中学高二年级举办了一次追寻先哲的足迹,倾听数学的声音的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:

序号

分组(分数)

组中值

频数(人数)

频率

1

65

0.12

2

75

20

3

85

0.24

4

95

合计

50

1

1)填充频率分布表中的空格;

2)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?

3)在上述统计数据的分析中有一项计算见算法流程图,求输出的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某桶装水经营部每天的房租、人员工资等固定成本为300元,每桶水的进价是8元,销售单价与日均销售量的关系如表所示:

销售单价/

9

10

11

12

13

14

日均销售量/

550

500

450

400

350

300

请根据以上数据分析,这个店怎样定每桶水的单价才能获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对数函数gx=1ogaxa0a≠1)和指数函数fx=axa0a≠1)互为反函数.已知函数fx=3x,其反函数为y=gx).

(Ⅰ)若函数gkx2+2x+1)的定义域为R,求实数k的取值范围;

(Ⅱ)若0x1x2|gx1|=|gx2|,求4x1+x2的最小值;

(Ⅲ)定义在I上的函数Fx),如果满足:对任意xI,总存在常数M0,都有-MFx)≤M成立,则称函数Fx)是I上的有界函数,其中M为函数Fx)的上界.若函数hx=,当m≠0时,探求函数hx)在x[01]上是否存在上界M,若存在,求出M的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线 的极坐标方程为:.

(I)若曲线,参数方程为:(为参数),求曲线的直角坐标方程和曲线的普通方程

(Ⅱ)若曲线,参数方程为 (为参数),,且曲线,与曲线交点分别为,求的取值范围,

查看答案和解析>>

同步练习册答案