精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知定点和直线,过定点F与直线相切的动圆圆心为点C。(1)求动点C的轨迹方程;  (2)过点F在直线l2交轨迹于两点P、Q,交直线l1于点R,求的最小值。
(Ⅰ)   (Ⅱ) 16
(1)由题设点C到点F的距离等于它到的距离,
∴点C的轨迹是以F为焦点,为准线的抛物线  ………………2分
∴所求轨迹的方程为  ………………4分
  
(2)由题意直线的方程为
与抛物线方程联立消去
  ………………6分
因为直线PQ的斜率,易得点R的坐标为
 ……8分

,当且仅当时取到等号。 ………………11分
的最小值为16 ………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,椭圆ab>0)的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AFBN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量,动点到定直线的距离等于,并且满足,其中为坐标原点,为非负实数.
(1)求动点的轨迹方程
(2)若将曲线向左平移一个单位,得曲线,试判断曲线为何种类型;
(3)若(2)中曲线为圆锥曲线,其离心率满足,当是曲线的两个焦点时,则圆锥曲线上恒存在点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点在以原点为圆心的单位圆上运动,则点的轨迹是(      )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,过定点作直线与抛物线)相交于两点.
(I)若点是点关于坐标原点的对称点,求面积的最小值;
(II)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若中心在原点,焦点在坐标上的椭圆短轴端点是双曲线y2x2=1的顶点,且该椭圆的离心率与此双曲线的离心率的乘积为1,则该椭圆的方程为    (   )
A.+y2="1" B.+x2="1" C.+y2="1" D.+x2=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,动点满足.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点作直线与曲线交于两点,若,求直线的方程;
(Ⅲ)设为曲线在第一象限内的一点,曲线处的切线与轴分别交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程表示的曲线是(   )
A.焦点在轴上的椭圆B.焦点在轴上的双曲线
C.焦点在轴上的椭圆D.焦点在轴上的双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与椭圆的左焦点重合,则p的值为
A.-2B.2C.-4D.4

查看答案和解析>>

同步练习册答案