4£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=Atn-1+Bn+1£¬ÆäÖÐA£¬B£¬tΪ³£Êý£¬ÇÒt£¾1£¬n¡Ên+£¬µÈʽ£¨x2+2x+2£©10=b0+b1£¨x+1£©+b2£¨x+1£©2+¡­+b20£¨x+1£©20£¬ÆäÖÐbi£¨i=1£¬2£¬3¡­£¬20£©ÎªÊµ³£Êý£®
£¨1£©ÈôA=0£¬B=1£¬Çó$\sum_{n=1}^{10}$anbn£®
£¨2£©ÈôA=1£¬B=0£¬ÇÒ$\sum_{n=1}^{10}$£¨2an-2n£©b2n=211-2£¬ÇóʵÊýtµÄÖµ£®

·ÖÎö £¨1£©ÀûÓöþÏîʽչ¿ª¶¨Àí±È½Ï¿ÉÖªb2n=${C}_{10}^{n}$£¨n=0£¬1£¬2£¬¡­£¬10£©£¬b2n-1=0£¨n=0£¬1£¬2£¬¡­£¬10£©£¬½ø¶øT=$\sum_{n=1}^{10}$n${C}_{10}^{n}$=0•${C}_{10}^{0}$+1•${C}_{10}^{1}$+2•${C}_{10}^{2}$+¡­+10•${C}_{10}^{10}$£¬ÀûÓõ¹ÐòÏà¼Ó·¨¡¢»¯¼ò¿ÉÖªT=5•210£¬½ø¶ø¼ÆËã¿ÉµÃ½áÂÛ£»
£¨2£©½áºÏ£¨1£©ÖнáÂÛ¡¢»¯¼ò¿ÉÖª$\frac{2}{t}$£¨1+t£©10-$\frac{2}{t}$-310+1=0£¬½ø¶ø¼ÆËã¿ÉµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©£¨x2+x+2£©10=[1+£¨x+1£©2]10
=${C}_{10}^{0}$+${C}_{10}^{1}$£¨x+1£©2+${C}_{10}^{2}$£¨x+1£©4+¡­+${C}_{10}^{10}$£¨x+1£©20
=b0+b1£¨x+1£©+b2£¨x+1£©2+¡­+b20£¨x+1£©20£¬
±È½Ï¿ÉÖª£ºb2n=${C}_{10}^{n}$£¨n=0£¬1£¬2£¬¡­£¬10£©£¬
b2n-1=0£¨n=0£¬1£¬2£¬¡­£¬10£©£¬
¶øA=0¡¢B=1ʱ£¬an=Atn-1+Bn+1=n+1£¬
¡à$\sum_{n=1}^{10}$anbn=$\sum_{n=1}^{10}$anb2n=£¨n+1£©${C}_{10}^{n}$=$\sum_{n=1}^{10}$n${C}_{10}^{n}$+$\sum_{n=1}^{10}$${C}_{10}^{n}$£¬
¼ÇT=$\sum_{n=1}^{10}$n${C}_{10}^{n}$=0•${C}_{10}^{0}$+1•${C}_{10}^{1}$+2•${C}_{10}^{2}$+¡­+10•${C}_{10}^{10}$£¬
ÁíÍâÒ²¿Éд³ÉT=$\sum_{n=1}^{10}$n${C}_{10}^{n}$=10•${C}_{10}^{10}$+¡­+2•${C}_{10}^{2}$+1•${C}_{10}^{1}$+0•${C}_{10}^{0}$£¬
Á½Ê½Ïà¼ÓµÃ£º2T=10•${C}_{10}^{10}$+¡­+10•${C}_{10}^{2}$+10•${C}_{10}^{1}$+10•${C}_{10}^{0}$
=10•£¨${C}_{10}^{10}$+¡­+${C}_{10}^{2}$+${C}_{10}^{1}$+${C}_{10}^{0}$£©
=10•210£¬
¼´T=5•210£¬
¡à$\sum_{n=1}^{10}$anbn=$\sum_{n=1}^{10}$n${C}_{10}^{n}$+$\sum_{n=1}^{10}$${C}_{10}^{n}$=5•210+210-1=6143£»
£¨2£©µ±A=1¡¢B=0ʱ£¬an=Atn-1+Bn+1=tn-1+1£¬
½áºÏ£¨1£©ÖнáÂÛ¿ÉÖª£º$\sum_{n=1}^{10}$£¨2an-2n£©b2n=2$\sum_{n=1}^{10}$anb2n-$\sum_{n=1}^{10}$2nb2n
=2$\sum_{n=1}^{10}$anb2n-$\sum_{n=1}^{10}$2nb2n ¡­¢Ù
=2[$\frac{1}{t}$£¨1+t£©10-1+210-1]-[£¨1+2£©10-1]
=$\frac{2}{t}$£¨1+t£©10-$\frac{2}{t}$+211-2-310+1
=211-2£¬
¼´$\frac{2}{t}$£¨1+t£©10-$\frac{2}{t}$-310+1=0£¬¡­¢Ú
¡ß¢ÙΪ¹ØÓÚtµÄµÝÔöµÄʽ×Ó£¬
¡à¹ØÓÚtµÄ·½³Ì×î¶àÖ»ÓÐÒ»½â£¬
¶ø¹Û²ì¢Ú¿ÉÖª£¬ÓÐÒ»½ât=2£¬
×ÛÉÏ¿ÉÖª£ºt=2£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄ×ÛºÏÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬±ÜÃâ´íÎó£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=ex-x2+b£¬ÇúÏßy=f£¨x£©ÓëÖ±Ïßy=ax+1ÏàÇÐÓڵ㣨1£¬f£¨1£©£©£®
£¨1£©Çóa¡¢bµÄÖµ£»
£¨2£©Ö¤Ã÷£ºµ±x£¾0ʱ£¬[ex+£¨2-e£©x-1]£¨3+cosx£©-4xsinx£¾0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬¡ÏA=60¡ã£¬¡ÏB=30¡ã£¬¡ÏC=20¡ã£¬Çó¡ÏBOCµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÖ±Ïßl1£º£¨k-3£©x+£¨4-k£©y+1=0Óël2£º2£¨k-3£©x-2y+3=0ƽÐУ®
£¨1£©ÇókµÄÖµ£»
£¨2£©Çól1ºÍl2Ö®¼äµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÊýÁÐ{an}ÖУ¬an £¾0£¬SnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÇÒan +$\frac{1}{{a}_{n}}$=2Sn£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=n£¨n¡ÊN*£©£¬SnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬bn=$\frac{2{S}_{n}+7}{n}$£¬ÔòbnÈ¡×îСֵʱnµÄȡֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¼ÆË㣺$\root{3}{25}$-$\sqrt{125}$¡Â$\root{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®½â²»µÈʽ£ºax2+£¨a+2£©x+1£¾0
£¨1£©a=0ʱ£»£¨2£©a¡Ù0ʱ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÈôʵÊýx¡¢yÂú×ã²»µÈʽ×é$\left\{\begin{array}{l}{x+2y-19¡Ý0}\\{x-y+8¡Ý0}\\{2x+y-14¡Ü0}\end{array}\right.$£¬ÇóÏÂÁÐÄ¿±êº¯ÊýµÄ×îÖµ£®
£¨1£©z=2x-y£»£¨2£©z=$\frac{y}{x}$£»£¨3£©z=x2+y2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸