精英家教网 > 高中数学 > 题目详情

【题目】已知在四棱锥中, 为正三角形, ,底面为平行四边形,平面平面,点是侧棱的中点,平面与棱交于点.

(1)求证:

(2)若,求平面与平面所成二面角(锐角)的余弦值.

【答案】(1)见解析;(2).

【解析】试题分析:1)由底面是平行四边形,利用线面平行的判定定理得在利用线面平行的性质定理,即可证得

(2)建立空间直角坐标系,求得平面和平面的一个法向量,利用空间向量的夹角公式,即可求解平面和平面的二面角的余弦值.

试题解析:

(1)∵底面是平行四边形,∴

又∵

又∵四点共面,且平面平面,

.

(2)取中点,连接侧面为正三角形,故,又平面平面,且平面平面,平面, 在平行四边形中, ,故为菱形, 且中点, .

如图,建立空间直角坐标系,

因为,则,

,点是棱中点, 是棱中点, ,

,设平面的法向量为,

则有, 不妨令,则平面的一个法向量为平面

是平面的一个法向量,

,

∴平面与平面所成的锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为(

A. 10000立方尺 B. 11000立方尺

C. 12000立方尺 D. 13000立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,的中点,以为折痕将向上折起,变为,且平面平面.

(Ⅰ)求证:

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,

1)若不等式的解集为,求的值;

2)若,求的最小值.

3)若 求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个班共有学生100人,为调查他们的体育锻炼情况,通过分层抽样获取了部分学生一周的锻炼时间,数据如下表(单位:小时).

6

7

6

7

8

5

6

7

8

(Ⅰ)试估计班学生人数;

(Ⅱ)从班和班抽出来的学生中各选一名,记班选出的学生为甲,班选出的学生为乙,若学生锻炼相互独立,求甲的锻炼时间大于乙的锻炼时间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形

为矩形,平面平面.

I)求证:平面

II)点在线段上运动,设平面与平面所成二面角的平面角为

试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知中,角的对边分别为

)若,求面积的最大值;

)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为ODEF为圆O上的点,△DBC,△ECA,△FAB分别是以BCCAAB为底边的等腰三角形。沿虚线剪开后,分别以BCCAAB为折痕折起△DBC,△ECA,△FAB,使得DEF重合,得到三棱锥。当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,均与底面垂直,且为直角梯形,分别为线段的中点,为线段上任意一点.

(1)证明:平面.

(2)若,证明:平面平面.

查看答案和解析>>

同步练习册答案