精英家教网 > 高中数学 > 题目详情

【题目】如图,在正三棱柱中,的中点,是线段上的动点,且.

(1)若,求证:

(2)求二面角的余弦值;

(3)若直线与平面所成角的大小为,求的最大值

【答案】(1)证明见解析;(2);(3)

【解析】

(1)取中点,通过线线垂直证明平面,从而得到

2)取中点中点,连接,则即为二面角的平面角,再利用余弦定理求出其余弦值.

(3)利用等体积法,求出到平面的距离及的长度,从而表示出关于的函数,求出最大值.

(1)取中点,联结

中点,又中点,

同理平面

(2)取中点中点,连接

即为二面角的平面角,

,则

,即二面角的余弦值为

(3)设到平面的距离为

由等体积法,,即

可得

当且仅当,即时,等号成立,

的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

(1)求在[0,2]上的最值;

(2)如果对于任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在杨辉三角形中,从第2行开始,除1以外,其它每一个数值是它上面的两个数值之和,该三角形数阵开头几行如图所示.

(1)在杨辉三角形中是否存在某一行,使该行中三个相邻的数之比是3∶4∶5?若存在,试求出是第几行;若不存在,请说明理由;

(2)已知n,r为正整数,且n≥r+3.求证:任何四个相邻的组合数C,C,C,C不能构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度 (单位:),对某种鸡的时段产蛋量(单位:) 和时段投入成本(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.

其中.

(1)根据散点图判断,哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给判断即可,不必说明理由)

(2)若用作为回归方程模型,根据表中数据,建立关于的回归方程;

(3)已知时段投入成本的关系为,当时段控制温度为时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?

附:①对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当的极值;

(2)若函数在[1,3]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中, 的中点,以为折痕将向上折起, 变为,且平面平面.

(Ⅰ)求证:

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(2,0),且圆C:x2+y2﹣6x+4y+4=0.

(Ⅰ)当直线过点P且与圆心C的距离为1时,求直线的方程;

(Ⅱ)设过点P的直线与圆C交于A、B两点,若|AB|=4,求以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】合肥一中、六中为了加强交流,增进友谊,两校准备举行一场足球赛,由合肥一中版画社的同学设计一幅矩形宣传画,要求画面面积为,画面的上、下各留空白,左、右各留空白.

(1)如何设计画面的高与宽的尺寸,才能使宣传画所用纸张面积最小?

(2)设画面的高与宽的比为,且,求为何值时,宣传画所用纸张面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究性学习小组对昼夜温差大小与某种子发芽多少之间的关系进行研究,下面是3月1日至5日每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数的详细记录:

(1)根据3月2日至3月4日的数据,用最小二乘法求出y关于x的线性回归方程;

日期

3月1日

3月2日

3月3日

3月4日

3月5日

温差

10

11

13

12

8

发芽数

23

25

30

26

16

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均小于2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?

参考公式:

查看答案和解析>>

同步练习册答案