精英家教网 > 高中数学 > 题目详情

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米, 米,记∠BHE=θ.

(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)若 ,求此时管道的长度L;
(3)当θ取何值时,污水净化效果最好?并求出此时管道的长度.

【答案】
(1)解:

由于

所以

所以

所以


(2)解:当 时,

(米)


(3)解:

设sinθ+cosθ=t,

所以

由于

所以

由于 上单调递减,

所以当 时,

L取得最大值 米.

答:当 时,污水净化效果最好,此时管道的长度为


【解析】(1)由∠BHE=θ,H是AB的中点,易得 ,由污水净化管道的长度L=EH+FH+EF,则易将污水净化管道的长度L表示为θ的函数.(2)若 ,结合(1)中所得的函数解析式,代入易得管道的长度L的值.(3)污水净化效果最好,即为管道的长度最长,由(1)中所得的函数解析式,结合三角函数的性质,易得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有以下命题:
①如果向量 与任何向量不能构成空间向量的一组基底,那么 的关系是不共线;
②O,A,B,C为空间四点,且向量 不构成空间的一个基底,则点O,A,B,C一定共面;
③已知向量 是空间的一个基底,则向量 + 也是空间的一个基底;
④△ABC中,A>B的充要条件是sinA>sinB.
其中正确的命题个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.
(1)当a为何值时,直线l与圆C相切;
(2)当直线l与圆C相交于A、B两点,且AB=2 时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< ),其图象相邻两条对称轴之间的距离为 ,且函数f(x+ )是偶函数,下列判断正确的是(
A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点( ,0)d对称
C.函数f(x)的图象关于直线x=﹣ 对称
D.函数f(x)在[ ,π]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}中,已知an>0,a1+a2+a3=15,且a1+2,a2+5,a3+13构成等比数列{bn}的前三项.
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义平面向量之间的一种运算“⊙”如下:对任意的 ,令 ,下面说法错误的是( )
A.若 共线,则 =0
B. =
C.对任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家为了了解某新产品使用者的年龄情况,现随机调査100 位使用者的年龄整理后画出的频率分布直方图如图所示.

(1)求100名使用者中各年龄组的人数,并利用所给的频率分布直方图估计所有使用者的平均年龄;

(2)若已从年龄在的使用者中利用分层抽样选取了6人,再从这6人中选出2人,求这2人在不同的年龄组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二面角α﹣AB﹣β是直二面角,P为棱AB上一点,PQ、PR分别在平面α、β内,且∠QPB=∠RPB=45°,则∠QPR为(
A.45°
B.60°
C.120°
D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】右边程序执行后输出的结果是( )

A.-1
B.0
C.1
D.2

查看答案和解析>>

同步练习册答案