精英家教网 > 高中数学 > 题目详情

【题目】已知点A10),圆E:(x+12+y2=16,点B是圆E上任意一点,线段AB的垂直平分线l与半径EB相交于H.

1)当点B在圆上运动时,求动点H的轨迹г的方程:

2)过点A且与坐标轴不垂直的直线交轨迹г于两点,线段OAO为坐标原点)上是否存在点使得若存在,求出实数m的取值范围;若不存在,说明理由.

【答案】1;(2.

【解析】

1)运用垂直平分线定理可得,,可得,由椭圆的定义即可得到所求轨迹方程;(2设直线的方程为,联立直线和椭圆的方程得到韦达定理,利用韦达定理求出PQ中点G的坐标,得到,得到,求出m的范围得解.

1)根据题意,

所以,

,

故动点的轨迹г是以为焦点,长轴长为4的椭圆.

设其方程为

可知

所以点的轨迹г的方程为

2)设直线的方程为

联立

由韦达定理有,其中△恒成立,

所以PQ的中点G的坐标为

所以直线MG的斜率为

因为,

所以

所以

k=0时,m=0;

时,.

综合得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示:

其中一个数字被污损.

(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率.

(2)随着节目的播出,极大激发了观众对成语知识的学习积累的热情,从中获益匪浅.现从观看该节目的观众中随机统计了位观众的周均学习成语知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如下表所示)

年龄x(岁)

周均学习成语知识时间y(小时)

由表中数据,试求线性回归方程,并预测年龄为岁观众周均学习成语知识时间.

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,以O为圆心的圆与直线相切.

(1)求圆O的方程.

(2)直线与圆O交于AB两点,在圆O上是否存在一点M,使得四边形为菱形?若存在,求出此时直线l的斜率;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点过点且与坐标轴不垂直的直线与椭圆交于两点当直线经过椭圆的一个顶点时其倾斜角恰好为

1求椭圆的方程

2为坐标原点线段上是否存在点使得?若存在,求出实数的取值范围;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若对于区间上的任意,都有,则实数的最小值是(  )

A. 20B. 18

C. 3D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A是圆Ox2+y216上的任意一点,l是过点A且与x轴垂直的直线,B是直线lx轴的交点,点Q在直线l上,且满足4|BQ|3|BA|.当点A在圆O上运动时,记点Q的轨迹为曲线C

1)求曲线C的方程;

2)已知直线ykx2k≠0)与曲线C交于MN两点,点M关于y轴的对称点为M,设P0,﹣2),证明:直线MN过定点,并求△PMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,若AB=B,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列项和为,且满足.

1)求数列的通项公式;

2)令的前项和,求证:.

3)在(2)的条件下,若数列的前n项和为,求证

4)请你说明第(3)问所用到的求和方法,哪些数列通项的模型适合此方法?请举例说明.(至少列举出三种)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程:在直角坐标系中,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程;

2)已知点,直线的极坐标方程为,它与曲线的交点为,与曲线的交点为,求的面积.

查看答案和解析>>

同步练习册答案