精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,a1=1,公差d≠0,a22=a1•a4,设数列的前n项和为Sn
(1)解不等式:,求正整数m,n的值;
(2)若数列{bn}满足b1=4,bn+1=bn2-an•bn+1,求证:
【答案】分析:(1)由已知,可求出an=n,从而不等式化为,整理为,得出m=2,n=1
(2)先用数学归纳法证明bn>n+2,由此bk+1=bk2-k•bk+1=bk(bk-k)+1>2bk+1,两边同时加上1,并整理得1+bk+1>2(1+bk ),得出1+bn>2(1+bn-1)>22(1-bn-2)>…>2n-1(1+b1)=5•2n-1,得出×()n-1,对不等式的右边各项放缩,再结合等比数列求和公式,计算化简,可以证明.
解答:解:(1)由题意,∵a22=a1•a4
∴(1+d)2=1+3d,∴d=1
∴an=n,




∴m=2,n=1;
(2)先用数学归纳法证明bn>n+2
当n=1时,b1=4>1+2,不等式成立.
假设n=k(k∈N,k≥1)时,不等式成立,即bk>k+2.则当n=k+1时,bk+1=bk2-k•bk+1=bk(bk-k)+1>(k+2)×2+1=2k+5>(k+1)+2,即当n=k+1时,不等式也成立.
所以对于任意正整数n均有bn>n+2
 由此bk+1=bk2-k•bk+1=bk(bk-k)+1>2bk+1,两边同时加上1,并整理得1+bk+1>2(1+bk ),∴1+bn>2(1+bn-1)>22(1-bn-2)>…>2n-1(1+b1)=5•2n-1×()n-1
(1+++)=×=[1-]<
点评:本题考查等差数列、等比数列通项公式,前n项和公式,放缩法证明不等式,考查分析、构造、转化、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案