精英家教网 > 高中数学 > 题目详情

从物体的前面向后面投射所得的视图称主视图,从物体的上面向下面投射所得的视图称俯视图、从物体的左面向右面投射所得的视图称左视图
已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点.
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)不论点E在何位置,是否都有BD⊥AE?证明你的结论;
(Ⅲ)若E点为PC的中点,求二面角D-AE-B的大小.

解:(I)由三视图知PC⊥面ABCD,
ABCD为正方形,
且PC=2,AB=BC=1(2分)
∴VP-ABCD=•SABCD×PC=•12•2= (1分)
(II)∵PC⊥面ABCD,BD?面ABCD
∴PC⊥BD …(1分)
而BD⊥AC,AC∩AE=A,
∴BD⊥面ACE,…(1分)
而AE?面ACE
∴BD⊥AE (1分)
(III)法一:连接AC,交BD于O.由对称性,二面角D-AE-B是二面角O-AE-B的2倍,设θ为二面角O-AE-B的平面角.
注意到B在面ACE上的射影为O
S△AOE= S△ACE=××=
S△ABE=AB•BE=•1•=,(2分)
∴cosθ==
∴θ=60°
∴二面角D-AE-B是120°(2分)
法二:以C为坐标原点,CD所在直线为x轴建立空间直角坐标系
则D(1,0,0),A(1,1,0),B(0,1,0),E(0,0,1),
从而=(-1,0,1),=(0,1,0),
=(1,0,0),=(0,-1,1)(2分)
设平面ADE和平面ABE的法向量分别为
=(x1,y1,z1),=(x2,y2,z2
则-x1+z1=0,y1=0
x2=0,-y2+z2=0
令z1=1,z2=-1,则
=( (1,0,1),=(0,-1,-1)(2分)
设二面角D-AE-B的平面角为θ,则|cosθ|===
二面角D-AE-B为钝二面角.∴二面角D-AE-B的大小为.(2分)
分析:(I)由三视图知PC⊥面ABCD,即高PC=2,且底面为正方形,边长为1,利用锥体体积公式计算即可.
(II)由于PC⊥BD,且BD⊥AC,所以不论点E在何位置,都有BD⊥面ACE,从而都有BD⊥AE.
(III)法一,连接AC,交BD于O.由对称性,二面角D-AE-B是二面角O-AE-B的2倍,利用射影面积法求出二面角O-AE-B的平面角后,问题获解
法二,以C为坐标原点,CD所在直线为x轴建立空间直角坐标系.求出平面ADE和平面ABE的法向量,利用向量的方法求出二面角D-AE-B的大小.
点评:本题考查几何体的三视图及直观图,线面垂直关系的判定,二面角的大小度量.考查考查了空间想象能力、计算能力,分析解决问题能力.空间问题平面化是解决空间几何体问题最主要的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•广州一模)为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(1)求该校报考飞行员的总人数;
(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

从物体的前面向后面投射所得的视图称主视图,从物体的上面向下面投射所得的视图称俯视图、从物体的左面向右面投射所得的视图称左视图
已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点.
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)不论点E在何位置,是否都有BD⊥AE?证明你的结论;
(Ⅲ)若E点为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第3小组的频数为12,则抽取的学生人数是
 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年四川省成都市九校联考高二(下)期中数学试卷(理科)(解析版) 题型:解答题

从物体的前面向后面投射所得的视图称主视图,从物体的上面向下面投射所得的视图称俯视图、从物体的左面向右面投射所得的视图称左视图
已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点.
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)不论点E在何位置,是否都有BD⊥AE?证明你的结论;
(Ⅲ)若E点为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

同步练习册答案