精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+lnx
(1)若f(x)<0恒成立,试求a的取值范围;
(2)设函数g(x)=
1
2
x2+(a2-a+1)x,令h(x)=g(x)-af(x),试证明存在唯一的正实数a0,使得函数h(x)的最小值为0,且1<a0<2.
考点:函数恒成立问题
专题:函数的性质及应用,导数的综合应用
分析:(1)运用参数分离,可得-a>
lnx
x
,运用导数求得右边函数的最大值,即可得到a的范围;
(2)求出h(x)的解析式和导数,对a讨论,当a≤0时,h(x)为递增函数,无最值,当a>0时,求得单调区间,得到最小值h(a),由零点存在定理可得h(1)h(2)<0,再由h(a)的导数判断单调性,即可得证.
解答: (1)解:若f(x)<0恒成立,即为ax+lnx<0对x>0恒成立.
即有-a>
lnx
x

令m(x)=
lnx
x
,m′(x)=
1-lnx
x2

当x>e时,m′(x)<0,m(x)递减;当0<x<e时,m′(x)>0,m(x)递增.
则x=e处m(x)取得极大值,也为最大值,且为
1
e

则有-a>
1
e
,即a<-
1
e

(2)证明:h(x)=g(x)-af(x)=
1
2
x2+(a2-a+1)x-a2x-alnx=
1
2
x2+(1-a)x-alnx,
h′(x)=x+(1-a)x-
a
x
=
x2+(1-a)x-a
x
=
(x+1)(x-a)
x

当a≤0时,h′(x)>0,h(x)递增,不存在最小值,
则a>0,当x>a时,h′(x)>0,h(x)递增,当0<x<a时,h′(x)<0,h(x)递减.
则x=a处h(x)取得极小值,也为最小值,且为a-
1
2
a2-alna,
令h(a)=a-
1
2
a2-alna,
h(1)=1-
1
2
-0>0,h(2)=2-2-2ln2<0,
由零点存在定理可得,h(a)在(1,2)内存在零点,
又h′(a)=1-a-(lna+1)=-a-lna<0,h(a)递减,
则存在唯一的正实数a0,使得函数h(x)的最小值为0,且1<a0<2.
点评:本题考查不等式的恒成立问题转化为求函数的最值,同时考查零点存在定理的运用,应用参数分离和导数判断单调性,求极值和最值是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=log4x-|x-4|的零点的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+x+5的图象在x轴上方,则a的取值范围是(  )
A、(0,
1
20
B、(-∞,-
1
20
C、(
1
20
,+∞)
D、(-
1
20
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

要从已编号(1~70)的70枚最新研制的某型导弹中随机抽取7枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的7枚导弹的编号可能是(  )
A、5,10,15,20,25,30,35
B、3,13,23,33,43,53,63
C、1,2,3,4,5,6,7
D、1,8,15,22,29,36,43

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是正数组成的数列,a1=1,且点(
an
,an+1)(n∈N*)在函数y=x2+1的图象上.数列{bn}满足b1=1,bn+1=bn+2an
(1)求数列{an},{bn}的通项公式;
(2)若数列{cn}满足cn=an•bn,求{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读右边程序框图,为使输出的数据为30,则判断框中应填入的条件为(  )
A、i≤4B、i≤5′
C、i≤6D、i≤7

查看答案和解析>>

科目:高中数学 来源: 题型:

书架上有语文书,数学书各三本,从中任取两本,取出的恰好都是数学书的概率为(  )
A、
1
3
B、
1
4
C、
1
5
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C:x2+(y-3)2=2,点A是x轴上的一个动点,AP,AQ分别切圆C于P,Q两点,则线段PQ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4-x)=f(x).现有以下三种叙述:
①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数
其中正确的序号是
 

查看答案和解析>>

同步练习册答案