精英家教网 > 高中数学 > 题目详情
2.函数$y=\frac{{\sqrt{x+3}}}{x}+lg({2-x})$的定义域为[-3,0)∪(0,2).

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则$\left\{\begin{array}{l}{x+3≥0}\\{x≠0}\\{2-x>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≥-3}\\{x≠0}\\{x<2}\end{array}\right.$,则-3≤x<0或0<x<2,
即函数的定义域为[-3,0)∪(0,2),
故答案为:[-3,0)∪(0,2).

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知a>0,设函数f(x)=$\frac{{2015}^{x+1}+2014}{{2015}^{x}+1}$(x∈[-a,a])的最大值为M,最小值为N,那么M+N=(  )
A.2008B.2009C.4028D.4029

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,tanAtanB=tanA+tanB+1,则C等于(  )
A.45°B.135°C.150°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若m<n,p<q且(p-m)(p-n)<0,(q-m)(q-n)<0,则m,n,p,q从小到大排列顺序是(  )
A.p<m<n<qB.m<p<q<nC.p<q<m<nD.m<n<p<q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,$f'(x)+\frac{f(x)}{x}<0$,若a=$\frac{1}{2}$f($\frac{1}{2}$),$b=-\sqrt{2}f(-\sqrt{2})$,c=(ln$\frac{1}{2}$)f(ln$\frac{1}{2}$),则a,b,c的大小关系正确的是(  )
A.a<c<bB.b<c<aC.a<b<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{\begin{array}{l}{x^2},\;\;x>0\\-f(x+1),x≤0.\end{array}\right.$则f(-3)的值为(  )
A.1B.-1C.0D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)={log_{\frac{1}{3}}}(9x)•{log_3}\frac{x}{3},\frac{1}{9}≤x≤27$.
(Ⅰ)设t=log3x,用t表示f(x),并指出t的取值范围;
(Ⅱ)求f(x)的最值,并指出取得最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中正确的有(  )个.
①若两条直线和第三条直线所成的角相等,则这两条直线互相平行.
②空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
③四面体的四个面中,最多有四个直角三角形.
④若两个平面垂直,则一个平面内的已知直线必垂直于另一个平面的无数条直线.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如果实数x,y满足约束条件$\left\{\begin{array}{l}{x+y+1≤0}\\{x-y+1≥0}\\{y≥-1}\end{array}\right.$,那么目标函数z=2x-y的最小值为-5.

查看答案和解析>>

同步练习册答案