精英家教网 > 高中数学 > 题目详情

【题目】阅读程序框图,运行相应的程序,则输出的T值为(
A.22
B.24
C.39
D.41

【答案】C
【解析】解:第1次执行循环体后,S=1,不满足退出循环的条件,故n=3;

第2次执行循环体后,S=32﹣1=8,不满足退出循环的条件,故n=5;

第3次执行循环体后,S=52﹣8=17,不满足退出循环的条件,故n=7;

第4次执行循环体后,S=72﹣17=32,满足退出循环的条件,

故输出的T=S+n=32+7=39,

故选:C

【考点精析】解答此题的关键在于理解程序框图的相关知识,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)为R上的可导函数,且对x∈R,均有f(x)>f′(x),则有(
A.e2016f(﹣2016)<f(0),f(2016)<e2016f(0)
B.e2016f(﹣2016)>f(0),f(2016)>e2016f(0)
C.e2016f(﹣2016)<f(0),f(2016)>e2016f(0)
D.e2016f(﹣2016)>f(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F 是棱 PA上的一个动点,E为PD的中点.
(Ⅰ)若 AF=1,求证:CE∥平面 BDF;
(Ⅱ)若 AF=2,求平面 BDF 与平面 PCD所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α∈[0,π),在直角坐标系xOy中,直线l1的参数方程为 (t为参数);在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l2的极坐标方程是ρcos(θ﹣α)=2sin(α+ ).
(Ⅰ)求证:l1⊥l2
(Ⅱ)设点A的极坐标为(2, ),P为直线l1 , l2的交点,求|OP||AP|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:

质量指标值分组

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

频数

6

26

38

22

8


(1)作出这些数据的频数分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中间值来代表这种产品质量的指标值);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的85%”的规定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;
(Ⅲ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知图一是四面体ABCD的三视图,E是AB的中点,F是CD的中点.
(1)求四面体ABCD的体积;
(2)求EF与平面ABC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)的右焦点为F2(3,0),离心率为e.
(Ⅰ)若 ,求椭圆的方程;
(Ⅱ)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2 , BF2的中点.若坐标原点O在以MN为直径的圆上,且 ,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,内角A,B,C的对边分别为a,b,c,且tanA,tanB是关于x的方程x2+(1+p)x+p+2=0的两个根,c=4.
(1)求角C的大小;
(2)求△ABC面积的取值范围.

查看答案和解析>>

同步练习册答案