精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为满足,且,正项数列满足,其前7项和为42.

(1)求数列的通项公式;

(2)令,数列的前项和为,若对任意正整数,都有,求实数的取值范围;

(3)将数列的项按照为奇数时,放在前面;当为偶数时,放在前面的要求进行排列,得到一个新的数列:,求这个新数列的前项和

【答案】(1);(2);(3)

【解析】

试题分析:(1)由已知得数列是等差数列,从而易得的通项公式,求得,利用求得,再求得可得数列通项,利用已知可得,又是等差数列,由等差数列的基本量法可求得;(2)代入,变形后得,从而易求得和,于是有,只要求得的最大值即可得的最小值,从而得的范围,研究的单调性可得;(3)根据新数列的构造方法,在求新数列的前项和时,对分类:()三类,可求解.

试题解析:(1)数列是首项为1,公差为的等差数列,

,即

.............................3分

,又数列是等差数列,且公差为,设的前项和为

...................5分

(2)由(1)知

.......................7分

,则

数列为递增数列,.........................9分

对任意正整数,都有恒成立,..........................10分

(3)数列的前项和,数列的前项和

时,

时,

特别地,当时,也符合上式;

时,

综上:...................................16分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

某园艺公司种植了一批名贵树苗,为了解树苗的生长情况,从这批树苗中随机地测量了棵树苗的高度(单位:厘米),并把这些高度列成如下的频数分布表:

组别

频数

2

4

11

16

13

4

(Ⅰ)在这批树苗中任取一棵,其高度在厘米以上的概率大约是多少?这批树苗的平均高度大约是多少?

(Ⅱ)为了进一步获得研究资料,标记组中的树苗为组中的树苗为,现从组中移出一棵树苗,从组中移出两棵树苗进行试验研究,则组的树苗组的树苗同时被移出的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB分别是椭圆的左、右端点,F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PAPF.

1P的坐标;

2M是椭圆长轴AB上的一点,M到直线AP的距离等于MB,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:(x﹣1)2+(y﹣1)2=4,直线l过点P(2,3)且与圆M交于A,B两点,且|AB|=2
(1)求直线l方程;
(2)设Q(x0 , y0)为圆M上的点,求x02+y02的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

以直角坐标系的原点为极点轴的正半轴为极轴且两个坐标系取相等的单位长度.已知直线的参数方程是为参数),曲线的极坐标方程是

(1)写出直线的普通方程和曲线的直角坐标方程

(2)设直线与曲线相交于两点的中点的极坐标为的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】底面是正方形的四棱锥中中,侧面底面,且是等腰直角三角形,其中分别为线段的中点,问在线段上是否存在点,使得二面角的余弦值为,若存在,请求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱中,,点D是BC的中点,点上,且

1)求证: 平面

2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数.

(Ⅰ)求曲线处的切线方程;

(Ⅱ)关于的不等式恒成立,求实数的取值范围;

(Ⅲ)关于的方程有两个实根 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设事件表示“关于的方程有实数根”.

(1)若,求事件发生的概率

(2)若,求事件发生的概率

查看答案和解析>>

同步练习册答案