【题目】已知数列的前项和为,满足,且,正项数列满足,其前7项和为42.
(1)求数列和的通项公式;
(2)令,数列的前项和为,若对任意正整数,都有,求实数的取值范围;
(3)将数列的项按照“当为奇数时,放在前面;当为偶数时,放在前面”的要求进行排列,得到一个新的数列:,求这个新数列的前项和.
【答案】(1);(2);(3),
【解析】
试题分析:(1)由已知得数列是等差数列,从而易得的通项公式,求得,利用求得,再求得可得数列通项,利用已知可得,又得是等差数列,由等差数列的基本量法可求得;(2)代入得,变形后得,从而易求得和,于是有,只要求得的最大值即可得的最小值,从而得的范围,研究的单调性可得;(3)根据新数列的构造方法,在求新数列的前项和时,对分类:,和()三类,可求解.
试题解析:(1)∵,∴数列是首项为1,公差为的等差数列,
∴,即,
∴,
又,∴.............................3分
∵,∴,又,∴,∴数列是等差数列,且公差为,设的前项和为,
∵,∴,∴...................5分
(2)由(1)知,
∴
,
∴.......................7分
设,则,
∴数列为递增数列,.........................9分
∴,
∵对任意正整数,都有恒成立,∴..........................10分
(3)数列的前项和,数列的前项和,
①当时,;
②当时,,
特别地,当时,也符合上式;
③当时,.
综上:,...................................16分
科目:高中数学 来源: 题型:
【题目】
某园艺公司种植了一批名贵树苗,为了解树苗的生长情况,从这批树苗中随机地测量了棵树苗的高度(单位:厘米),并把这些高度列成如下的频数分布表:
组别 | ||||||
频数 | 2 | 4 | 11 | 16 | 13 | 4 |
(Ⅰ)在这批树苗中任取一棵,其高度在厘米以上的概率大约是多少?这批树苗的平均高度大约是多少?
(Ⅱ)为了进一步获得研究资料,标记组中的树苗为,组中的树苗为,现从组中移出一棵树苗,从组中移出两棵树苗进行试验研究,则组的树苗和组的树苗同时被移出的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A、B分别是椭圆的左、右端点,F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF.
(1)点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于MB,求椭圆上的点到点M的距离d的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M:(x﹣1)2+(y﹣1)2=4,直线l过点P(2,3)且与圆M交于A,B两点,且|AB|=2 .
(1)求直线l方程;
(2)设Q(x0 , y0)为圆M上的点,求x02+y02的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线的参数方程是(为参数),曲线的极坐标方程是.
(1)写出直线的普通方程和曲线的直角坐标方程;
(2)设直线与曲线相交于,两点,点为的中点,点的极坐标为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】底面是正方形的四棱锥中中,侧面底面,且是等腰直角三角形,其中,分别为线段的中点,问在线段上是否存在点,使得二面角的余弦值为,若存在,请求出点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, 为自然对数的底数.
(Ⅰ)求曲线在处的切线方程;
(Ⅱ)关于的不等式在恒成立,求实数的取值范围;
(Ⅲ)关于的方程有两个实根, ,求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com