精英家教网 > 高中数学 > 题目详情

已知二次函数y=ax2+bx+c的图象经过(-1,0),存在常数a,b,c使得不等式数学公式对一切实数x都成立,求常数a,b,c的值.

解:∵f(x)的图象过点(-1,0),∴a-b+c=0①
∵x≤f(x)≤对一切x∈R均成立,
∴当x=1时也成立,即1≤a+b+c≤1.
故有a+b+c=1.②
由①②得b=,c=-a.
∴f(x)=ax2+x+-a.
故x≤ax2+x+-a≤对一切x∈R成立,
也即恒成立
解得a=.∴c=-a=
∴常数a,b,c的值为:a=,b=,c=
分析:通过图象过一点得到a、b、c一关系式,观察发现1≤f(1)≤1,又可的一关系式,再将b、c都有a表示.不等式x≤f(x)≤对一切实数x都成立可转化成两个一元二次不等式恒成立,即可解得.
点评:本题考查了函数恒成立问题,以及二次函数的性质,赋值法(特殊值法)可以使问题变得比较明朗,它是解决这类问题比较常用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=ax2+bx+c在(-1,+∞)上为减函数,则f(0)>0,则直线ax+by+c=0不经过第
 
象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知二次函数y=x2+ax+b-3,x∈R的图象恒过点(1,0),则a2+b2的最小值为
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=x2+ax+5在区间[2,+∞)上是增函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象经过原点,且f(x-1)=f(x)+x-1.
(1)求f(x)的表达式.
(2)设F(x)=4f(ax)+3a2x-1(a>0且a≠1),当x∈[-1,1]时,F(x)有最大值14,试求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二次函数y=x2+ax+b-3,x∈R的图象恒过点(1,0),则a2+b2的最小值为______.

查看答案和解析>>

同步练习册答案